Spaces:
Running
Running
File size: 29,570 Bytes
b0fcec7 9494d96 b0fcec7 3c283d9 b0fcec7 10f22d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
import pandas as pd
from enum import Enum
from datetime import datetime, timedelta
plt.style.use('seaborn-v0_8-whitegrid')
# Define content modality types
class ContentModality(Enum):
TEXT = 1
IMAGE = 2
AUDIO = 3
VIDEO = 4
INTERACTIVE = 5
MIXED = 6
# Define columns for FSRS algorithm (from app.py)
columns = ["difficulty", "stability", "retrievability", "delta_t",
"reps", "lapses", "last_date", "due", "ivl", "cost", "rand"]
col = {key: i for i, key in enumerate(columns)}
first_rating_prob = np.array([0.15, 0.2, 0.6, 0.05])
def moving_average(data, window_size=7):
"""Calculate moving average with the specified window size"""
weights = np.ones(window_size) / window_size
return np.convolve(data, weights, mode='valid')
# Spaced Repetition Simulation (from app.py)
def simulate_fsrs(w, request_retention=0.9, deck_size=10000, learn_span=100,
max_cost_perday=200, max_ivl=36500, recall_cost=10,
forget_cost=30, learn_cost=10, progress=None):
card_table = np.zeros((len(columns), deck_size))
card_table[col["due"]] = learn_span
card_table[col["difficulty"]] = 1e-10
card_table[col["stability"]] = 1e-10
review_cnt_per_day = np.zeros(learn_span)
learn_cnt_per_day = np.zeros(learn_span)
memorized_cnt_per_day = np.zeros(learn_span)
def stability_after_success(s, r, d, response):
hard_penalty = np.where(response == 1, w[15], 1)
easy_bonus = np.where(response == 3, w[16], 1)
return s * (1 + np.exp(w[8]) * (11 - d) * np.power(s, -w[9]) * (
np.exp((1 - r) * w[10]) - 1) * hard_penalty * easy_bonus)
def stability_after_failure(s, r, d):
return np.maximum(0.1, np.minimum(
w[11] * np.power(d, -w[12]) * (np.power(s + 1, w[13]) - 1) * np.exp((1 - r) * w[14]), s))
iterator = tqdm(range(learn_span)) if progress is None else range(learn_span)
for today in iterator:
if progress is not None:
progress((today / learn_span) * 0.5) # Use first half of progress for FSRS
has_learned = card_table[col["stability"]] > 1e-10
card_table[col["delta_t"]][has_learned] = today - \
card_table[col["last_date"]][has_learned]
card_table[col["retrievability"]][has_learned] = np.power(
1 + card_table[col["delta_t"]][has_learned] / (9 * card_table[col["stability"]][has_learned]), -1)
card_table[col["cost"]] = 0
need_review = card_table[col["due"]] <= today
card_table[col["rand"]][need_review] = np.random.rand(
np.sum(need_review))
forget = card_table[col["rand"]] > card_table[col["retrievability"]]
card_table[col["cost"]][need_review & forget] = forget_cost
card_table[col["cost"]][need_review & ~forget] = recall_cost
true_review = need_review & (
np.cumsum(card_table[col["cost"]]) <= max_cost_perday)
card_table[col["last_date"]][true_review] = today
card_table[col["lapses"]][true_review & forget] += 1
card_table[col["reps"]][true_review & ~forget] += 1
card_table[col["stability"]][true_review & forget] = stability_after_failure(
card_table[col["stability"]][true_review & forget], card_table[col["retrievability"]][true_review & forget],
card_table[col["difficulty"]][true_review & forget])
review_ratings = np.random.choice([1, 2, 3], np.sum(true_review & ~forget), p=[0.3, 0.6, 0.1])
card_table[col["stability"]][true_review & ~forget] = stability_after_success(
card_table[col["stability"]][true_review & ~forget],
card_table[col["retrievability"]][true_review & ~forget],
card_table[col["difficulty"]][true_review & ~forget], review_ratings)
card_table[col["difficulty"]][true_review & forget] = np.clip(
card_table[col["difficulty"]][true_review & forget] + 2 * w[6], 1, 10)
need_learn = card_table[col["due"]] == learn_span
card_table[col["cost"]][need_learn] = learn_cost
true_learn = need_learn & (
np.cumsum(card_table[col["cost"]]) <= max_cost_perday)
card_table[col["last_date"]][true_learn] = today
first_ratings = np.random.choice(4, np.sum(true_learn), p=first_rating_prob)
card_table[col["stability"]][true_learn] = np.choose(
first_ratings, w[:4])
card_table[col["difficulty"]][true_learn] = w[4] - \
w[5] * (first_ratings - 3)
card_table[col["ivl"]][true_review | true_learn] = np.clip(np.round(
9 * card_table[col["stability"]][true_review | true_learn] * (1 / request_retention - 1), 0), 1, max_ivl)
card_table[col["due"]][true_review | true_learn] = today + \
card_table[col["ivl"]][true_review | true_learn]
review_cnt_per_day[today] = np.sum(true_review)
learn_cnt_per_day[today] = np.sum(true_learn)
memorized_cnt_per_day[today] = card_table[col["retrievability"]].sum()
return card_table, review_cnt_per_day, learn_cnt_per_day, memorized_cnt_per_day
# Multimodal Learning Simulation
def simulate_multimodal_srs(
baseline_retention=0.9,
modality_weights=[1.0, 1.2, 0.9, 1.3, 1.4, 1.1],
learning_days=100,
cards_per_day=20,
initial_ease=2.5,
max_ease=3.5,
min_ease=1.3,
learning_rate=0.05,
max_cost_perday=200,
progress=None
):
"""Simulate the adaptive multimodal spaced repetition system over time."""
# Initialize tracking arrays
total_cards = min(cards_per_day * learning_days, 10000) # Cap to reasonable size
reviews_per_day = np.zeros(learning_days)
retention_per_day = np.zeros(learning_days)
modality_usage = {mod: np.zeros(learning_days) for mod in ContentModality}
modality_success = {mod: np.zeros(learning_days) for mod in ContentModality}
# Card state tracking
card_ease = np.ones(total_cards) * initial_ease
card_interval = np.ones(total_cards)
card_due_day = np.zeros(total_cards)
card_reps = np.zeros(total_cards)
# When each card is introduced
card_intro_day = np.zeros(total_cards)
for i in range(total_cards):
card_intro_day[i] = i // cards_per_day
# System's belief about user preferences (starts neutral)
believed_modality_preference = np.ones(len(ContentModality))
# User's true preferences (based on input weights)
true_modality_preference = np.array(modality_weights)
# Run the simulation
iterator = tqdm(range(learning_days)) if progress is None else range(learning_days)
for day in iterator:
if progress is not None:
progress(0.5 + (day / learning_days) * 0.5) # Use second half of progress for multimodal
# Find cards due today
due_mask = (card_due_day <= day) & (card_intro_day <= day)
due_cards = np.where(due_mask)[0]
# Track daily cost to stay within max_cost_perday
daily_cost = 0
reviews_today = 0
correct_today = 0
# Randomize review order
if len(due_cards) > 0:
np.random.shuffle(due_cards)
# Process each due card
for card_id in due_cards:
# Check if we still have time budget
if daily_cost >= max_cost_perday:
break
reviews_today += 1
# Choose modality based on current beliefs
modality_idx = np.random.choice(
len(ContentModality),
p=believed_modality_preference / believed_modality_preference.sum()
)
modality = ContentModality(modality_idx + 1)
# Track modality usage
modality_usage[modality][day] += 1
# Calculate recall probability based on interval and modality
recall_prob = np.power(1 + card_interval[card_id] / (9 * card_ease[card_id]), -1)
mod_factor = true_modality_preference[modality.value - 1]
recall_prob = min(0.99, recall_prob * mod_factor)
# Simulate if user remembers card
remembered = np.random.random() < recall_prob
if remembered:
# Success - increase ease factor
card_ease[card_id] = min(max_ease, card_ease[card_id] + 0.1)
correct_today += 1
modality_success[modality][day] += 1
daily_cost += 10 # Review cost
# Update interval using SM-2 algorithm with modality
if card_reps[card_id] == 0:
card_interval[card_id] = 1
elif card_reps[card_id] == 1:
card_interval[card_id] = 6
else:
card_interval[card_id] = card_interval[card_id] * card_ease[card_id]
card_reps[card_id] += 1
else:
# Failure - decrease ease factor
card_ease[card_id] = max(min_ease, card_ease[card_id] - 0.2)
card_interval[card_id] = 1
card_reps[card_id] = 0
daily_cost += 30 # Relearn cost
# Update due date
card_due_day[card_id] = day + max(1, int(card_interval[card_id]))
# Update belief about modality effectiveness
update_vector = np.zeros(len(ContentModality))
update_vector[modality.value - 1] = learning_rate * (1 if remembered else -1)
believed_modality_preference += update_vector
# Ensure beliefs are positive
believed_modality_preference = np.maximum(0.1, believed_modality_preference)
# Add new cards if we have budget left
new_cards_today = 0
for i in range(total_cards):
if card_intro_day[i] == day:
if daily_cost + 10 <= max_cost_perday: # Check if we can afford to learn
daily_cost += 10 # Learn cost
new_cards_today += 1
else:
# Postpone introduction if no time left today
card_intro_day[i] += 1
# Calculate daily stats
if reviews_today > 0:
retention_per_day[day] = correct_today / reviews_today
else:
retention_per_day[day] = 0
reviews_per_day[day] = reviews_today
# Calculate effectiveness per modality
modality_effectiveness = {}
for mod in ContentModality:
usage = modality_usage[mod]
success = modality_success[mod]
effectiveness = np.zeros(learning_days)
for i in range(learning_days):
if usage[i] > 0:
effectiveness[i] = success[i] / usage[i]
modality_effectiveness[mod] = effectiveness
# Calculate average retention rate at the end
final_retention = np.mean(retention_per_day[max(0, learning_days - 10):])
return {
'reviews_per_day': reviews_per_day,
'retention_per_day': retention_per_day,
'modality_usage': modality_usage,
'modality_effectiveness': modality_effectiveness,
'final_modality_beliefs': believed_modality_preference,
'true_modality_preference': true_modality_preference,
'final_retention': final_retention
}
def run_combined_simulation(
# FSRS parameters
fsrs_weights,
retrievability,
stability,
difficulty,
# Multimodal parameters
text_weight,
image_weight,
audio_weight,
video_weight,
interactive_weight,
mixed_weight,
# Shared parameters
target_retention,
learning_time,
learning_days,
deck_size,
max_ivl,
recall_cost,
forget_cost,
learn_cost,
learning_rate,
progress=gr.Progress()
):
"""Run both simulations and generate combined output"""
np.random.seed(42) # For reproducibility
# Parse FSRS weights
weights_str = ",".join([fsrs_weights, retrievability, stability, difficulty]).replace('[', '').replace(']', '')
w = list(map(lambda x: float(x.strip()), weights_str.split(',')))
# Calculate max cost per day in seconds
max_cost_perday = int(learning_time) * 60
# Run FSRS simulation
(card_table,
fsrs_review_cnt,
fsrs_learn_cnt,
fsrs_memorized_cnt) = simulate_fsrs(w,
request_retention=float(target_retention),
deck_size=int(deck_size),
learn_span=int(learning_days),
max_cost_perday=max_cost_perday,
max_ivl=int(max_ivl),
recall_cost=int(recall_cost),
forget_cost=int(forget_cost),
learn_cost=int(learn_cost),
progress=progress)
# Run multimodal simulation
modality_weights = [
float(text_weight),
float(image_weight),
float(audio_weight),
float(video_weight),
float(interactive_weight),
float(mixed_weight)
]
multi_results = simulate_multimodal_srs(
baseline_retention=float(target_retention),
modality_weights=modality_weights,
learning_days=int(learning_days),
cards_per_day=int(deck_size) // int(learning_days),
initial_ease=2.5,
learning_rate=float(learning_rate),
max_cost_perday=max_cost_perday,
progress=progress
)
# Create visualization plots
plots = create_combined_plots(
fsrs_review_cnt,
fsrs_learn_cnt,
fsrs_memorized_cnt,
multi_results,
int(learning_days)
)
# Generate recommendations
recommendations = generate_recommendations(
fsrs_review_cnt,
multi_results,
int(learning_days),
target_retention,
modality_weights
)
return plots + [recommendations]
def create_combined_plots(fsrs_review_cnt, fsrs_learn_cnt, fsrs_memorized_cnt, multi_results, learning_days):
"""Create visualization plots from both simulation results"""
# Ensure smooth window size is reasonable
smooth_window = min(7, learning_days // 10)
if smooth_window < 2:
smooth_window = 2
# Plot 1: Review Counts Comparison
fig1 = plt.figure(figsize=(10, 6))
ax = fig1.add_subplot(111)
if len(fsrs_review_cnt) > smooth_window:
ax.plot(moving_average(fsrs_review_cnt, smooth_window), 'b-',
label='Standard SRS Reviews')
else:
ax.plot(fsrs_review_cnt, 'b-', label='Standard SRS Reviews')
if len(multi_results['reviews_per_day']) > smooth_window:
ax.plot(moving_average(multi_results['reviews_per_day'], smooth_window), 'r-',
label='Multimodal SRS Reviews')
else:
ax.plot(multi_results['reviews_per_day'], 'r-', label='Multimodal SRS Reviews')
ax.set_xlabel('Day')
ax.set_ylabel('Number of Reviews')
ax.set_title('Review Counts: Standard vs Multimodal SRS')
ax.legend()
# Plot 2: Retention & Memorization
fig2 = plt.figure(figsize=(10, 6))
ax1 = fig2.add_subplot(111)
if len(multi_results['retention_per_day']) > smooth_window:
ax1.plot(moving_average(multi_results['retention_per_day'], smooth_window), 'g-',
label='Multimodal Retention Rate')
else:
ax1.plot(multi_results['retention_per_day'], 'g-', label='Multimodal Retention Rate')
ax1.set_xlabel('Day')
ax1.set_ylabel('Retention Rate')
ax1.set_ylim(0, 1.0)
ax1.legend(loc='upper left')
ax2 = ax1.twinx()
ax2.plot(fsrs_memorized_cnt, 'b--', label='Standard SRS Cumulative Memorized')
ax2.set_ylabel('Cumulative Memorized Items')
ax2.legend(loc='upper right')
ax1.set_title('Retention Rate & Memorized Items')
# Plot 3: Modality Effectiveness
fig3 = plt.figure(figsize=(10, 6))
ax = fig3.add_subplot(111)
for mod in ContentModality:
effectiveness = multi_results['modality_effectiveness'][mod]
if len(effectiveness) > smooth_window:
smooth_eff = moving_average(effectiveness, smooth_window)
ax.plot(range(len(smooth_eff)), smooth_eff, label=mod.name)
else:
ax.plot(effectiveness, label=mod.name)
ax.set_xlabel('Day')
ax.set_ylabel('Success Rate')
ax.set_ylim(0, 1.0)
ax.set_title('Modality Effectiveness Over Time')
ax.legend()
# Plot 4: Modality Usage Over Time
fig4 = plt.figure(figsize=(10, 6))
ax = fig4.add_subplot(111)
modality_data = []
mod_labels = []
for mod in ContentModality:
usage_data = multi_results['modality_usage'][mod]
if len(usage_data) > smooth_window:
modality_data.append(moving_average(usage_data, smooth_window))
else:
modality_data.append(usage_data)
mod_labels.append(mod.name)
modality_data = np.array(modality_data)
# Create stacked area plot
x = range(len(modality_data[0]))
ax.stackplot(x, modality_data, labels=mod_labels)
ax.set_xlabel('Day')
ax.set_ylabel('Number of Reviews')
ax.set_title('Modality Distribution Over Time')
ax.legend()
return [fig1, fig2, fig3, fig4]
def generate_recommendations(fsrs_review_cnt, multi_results, learning_days, target_retention, modality_weights):
"""Generate personalized recommendations based on simulation results"""
# Find most effective modalities
modality_avg_effectiveness = {}
for mod in ContentModality:
effectiveness = multi_results['modality_effectiveness'][mod]
# Calculate average of last 25% of days to get mature effectiveness
start_idx = max(0, int(learning_days * 0.75))
avg_eff = np.mean(effectiveness[start_idx:]) if len(effectiveness) > start_idx else np.mean(effectiveness)
modality_avg_effectiveness[mod] = avg_eff
# Sort modalities by effectiveness
sorted_modalities = sorted(modality_avg_effectiveness.items(), key=lambda x: x[1], reverse=True)
# Analyze review patterns
avg_reviews_std = np.mean(fsrs_review_cnt)
peak_reviews_std = np.max(fsrs_review_cnt)
avg_reviews_multi = np.mean(multi_results['reviews_per_day'])
# Calculate efficiency gain
std_retention = np.mean(fsrs_review_cnt[-10:]) / np.mean(fsrs_review_cnt[:10]) if len(fsrs_review_cnt) > 10 else 1
multi_retention = multi_results['final_retention']
efficiency_gain = (multi_retention / float(target_retention)) / (avg_reviews_multi / avg_reviews_std)
# Generate recommendations
top_modalities = [mod.name for mod, _ in sorted_modalities[:3]]
# Dynamic time period calculations based on learning_days
total_period = learning_days
# Scale intervals based on learning period length
if total_period <= 30: # Short learning period
initial_interval = (1, 1)
second_interval = (1, 2)
third_interval = (2, 3)
long_term_start = "Week 2+"
elif total_period <= 90: # Medium learning period
initial_interval = (1, 2)
second_interval = (2, 4)
third_interval = (4, 7)
long_term_start = "Week 4+"
else: # Long learning period
initial_interval = (1, 3)
second_interval = (3, 6)
third_interval = (6, 10)
long_term_start = "Month 2+"
# Calculate period durations (as percentage of total learning period)
initial_period = max(1, int(total_period * 0.1)) # 10% of learning period
second_period = max(1, int(total_period * 0.15)) # 15% of learning period
third_period = max(1, int(total_period * 0.25)) # 25% of learning period
# Format period text based on learning days
if total_period < 14:
period_unit = "days"
initial_text = f"Days 1-{initial_period}"
second_text = f"Days {initial_period + 1}-{initial_period + second_period}"
third_text = f"Days {initial_period + second_period + 1}-{initial_period + second_period + third_period}"
elif total_period < 60:
period_unit = "weeks"
initial_text = f"Week 1"
second_text = f"Week 2"
third_text = f"Weeks 3-4"
else:
period_unit = "months"
initial_text = f"Month 1"
second_text = f"Month 2"
third_text = f"Month 3"
recommendation = f"""
# Learning Optimization Recommendations
## Target Retention Analysis
- Target retention rate: {float(target_retention):.1%}
- Achieved retention with multimodal approach: {multi_retention:.1%}
- Estimated learning efficiency gain: {efficiency_gain:.2f}x
## Optimal Modality Recommendations
Based on the simulation, the most effective learning modalities for you are:
1. **{top_modalities[0]}** (Primary) - Use for initial learning and difficult content
2. **{top_modalities[1]}** (Secondary) - Use for reinforcement and review
3. **{top_modalities[2]}** (Supplementary) - Use for variety and to prevent fatigue
## Review Schedule Optimization
- Optimal workload per day: {int(min(20, avg_reviews_std / 3))}
- Recommended review sessions: {2 if avg_reviews_std > 30 else 1} per day
## Spaced Repetition Strategy
- **{initial_text}:** Focus on using {top_modalities[0]} modality with shorter intervals ({initial_interval[0]}-{initial_interval[1]} {period_unit})
- **{second_text}:** Introduce {top_modalities[1]} modality and extend intervals ({second_interval[0]}-{second_interval[1]} {period_unit})
- **{third_text}:** Begin mixing in {top_modalities[2]} for variety and extend intervals ({third_interval[0]}-{third_interval[1]} {period_unit})
- **{long_term_start}:** Prioritize tough content in {top_modalities[0]} format, and maintain variety with other modalities
## Estimated Results
Following this personalized approach should help you:
- Reduce total review time by approximately {min(75, int(100 * (1 - 1 / efficiency_gain)))}%
- Reach your target retention rate of {float(target_retention):.1%} or higher
- Maintain knowledge for longer periods with less review
"""
return recommendation
# Create the Gradio interface
title = """
# CS6460-Ed Tech: Comprehensive Multimodal Spaced Repetition Learning Dashboard
This dashboard combines two powerful learning optimization approaches:
1. **Free Spaced Repetition Scheduler (FSRS)** - An advanced algorithm for optimal review timing
2. **Multimodal Learning System** - A system that adapts content presentation to your learning preferences
## Parameter Settings
- **Preset Parameters**: These are pre-calibrated values based on research data that define the underlying models
- FSRS Model Parameters: Define the mathematical model for spaced repetition intervals
- Multimodal Weights: Define the effectiveness of different learning modalities
- **Those preset parameters are for user personal learning patterns, since all of them are customized parameters, I leave default values here for now.**
- **Customizable Settings**: These are parameters you can adjust based on your specific learning scenario
- Learning Period & Time: How long and how much time per day you plan to study
- Target Retention: The memory retention rate you aim to achieve
- Knowledge Load: How much material you need to learn
## How to Use This Dashboard
1. **Configure Settings** (Parameter Settings tab):
- Adjust the preset parameters if you have specific data about your learning preferences
- Set your customizable settings based on your actual study plan and goals
- Click "Run Simulation" to process your configuration
2. **Review Analysis** (Analysis tab):
- Compare standard vs. multimodal review patterns
- Examine retention rates over time
- Understand which modalities are most effective for your learning style
- See how modality usage evolves as the system adapts to your preferences
3. **Apply Recommendations** (Recommendations tab):
- Review the personalized learning strategy based on simulation results
- Follow the suggested spaced repetition schedule and modality mix
- Apply the recommendations to your actual study plan
Adjust the parameters below to see how different settings affect your learning efficiency,
and get personalized recommendations for optimizing your study approach.
"""
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Tab("Parameter Settings"):
with gr.Row():
with gr.Column():
gr.Markdown("### Spaced Repetition (FSRS) Settings")
fsrs_weights = gr.Textbox(
label="Model Super-Parameter",
value="0.4, 0.6, 2.4, 5.8, 4.93, 0.94, 0.86, 0.01, 1.49, 0.14, 0.94, 2.18, 0.05, 0.34"
)
retrievability = gr.Textbox(label="Retrievability", value="0.9")
stability = gr.Textbox(label="Stability", value="0.95")
difficulty = gr.Textbox(label="Difficulty", value="1.06")
with gr.Column():
gr.Markdown("### Multimodal Learning Settings")
text_weight = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Text Effectiveness")
image_weight = gr.Slider(minimum=0.5, maximum=2.0, value=1.2, step=0.1, label="Image Effectiveness")
audio_weight = gr.Slider(minimum=0.5, maximum=2.0, value=0.9, step=0.1, label="Audio Effectiveness")
video_weight = gr.Slider(minimum=0.5, maximum=2.0, value=1.3, step=0.1, label="Video Effectiveness")
interactive_weight = gr.Slider(minimum=0.5, maximum=2.0, value=1.4, step=0.1,
label="Interactive Effectiveness")
mixed_weight = gr.Slider(minimum=0.5, maximum=2.0, value=1.1, step=0.1, label="Mixed Effectiveness")
with gr.Row():
with gr.Column():
gr.Markdown("### Shared Learning Parameters (Set Customized Parameters Here)")
target_retention = gr.Slider(
label="Target Recall Rate",
minimum=0.7,
maximum=0.99,
value=0.9,
step=0.01
)
learning_time = gr.Slider(
label="Learning Time Per Day (minutes)",
minimum=5,
maximum=120,
value=30,
step=5
)
learning_days = gr.Slider(
label="Learning Period (days)",
minimum=30,
maximum=365,
value=100,
step=5
)
deck_size = gr.Slider(
label="Knowledge Load",
minimum=100,
maximum=10000,
value=1000,
step=100
)
with gr.Column():
max_ivl = gr.Slider(
label="Maximum Interval (days)",
minimum=1,
maximum=365,
value=36,
step=1
)
recall_cost = gr.Slider(
label="Review Cost (seconds)",
minimum=1,
maximum=60,
value=10,
step=1
)
forget_cost = gr.Slider(
label="Relearn Cost (seconds)",
minimum=1,
maximum=120,
value=30,
step=1
)
learn_cost = gr.Slider(
label="Learn Cost (seconds)",
minimum=1,
maximum=60,
value=10,
step=1
)
learning_rate = gr.Slider(
label="Learning Rate",
minimum=0.01,
maximum=0.2,
value=0.05,
step=0.01
)
run_btn = gr.Button("Run Simulation", variant="primary")
with gr.Tab("Analysis"):
with gr.Row():
plot1 = gr.Plot(label="Review Counts: Standard vs Multimodal")
plot2 = gr.Plot(label="Retention Rate & Memorized Items")
with gr.Row():
plot3 = gr.Plot(label="Modality Effectiveness Over Time")
plot4 = gr.Plot(label="Modality Distribution Over Time")
with gr.Tab("Recommendations"):
recommendations = gr.Markdown(label="Personalized Learning Recommendations")
# Connect the button to the function
run_btn.click(
fn=run_combined_simulation,
inputs=[
fsrs_weights, retrievability, stability, difficulty,
text_weight, image_weight, audio_weight, video_weight, interactive_weight, mixed_weight,
target_retention, learning_time, learning_days, deck_size, max_ivl,
recall_cost, forget_cost, learn_cost, learning_rate
],
outputs=[plot1, plot2, plot3, plot4, recommendations]
)
if __name__ == "__main__":
demo.launch(show_error=True,share=True) |