import gradio as gr import os from dotenv import load_dotenv # Load environment variables load_dotenv() # Model details MODEL_NAME = "unsloth/DeepSeek-R1-Distill-Qwen-14B-bnb-4bit" SPACE_NAME = os.getenv("HF_SPACE_NAME", "qwen4bit") def generate_response(prompt, max_new_tokens=256): """ This is a placeholder function that will be replaced with actual model inference after fine-tuning is complete. """ # Currently returns a placeholder message return f"""[Placeholder Response] This is a demo of the {MODEL_NAME} model. Once fine-tuning is complete, this will respond to: "{prompt}" This space will be updated with the fine-tuned model.""" # Create the Gradio interface with gr.Blocks(title=f"Fine-tuned {MODEL_NAME}") as demo: gr.Markdown(f""" # Fine-tuned DeepSeek-R1-Distill-Qwen-14B Model This space will host the fine-tuned version of `{MODEL_NAME}` once training is complete. **Model Details**: - Base model: `{MODEL_NAME}` - Fine-tuned on: `phi4-cognitive-dataset` - 4-bit quantized (already, not further quantized) **Current Status**: Preparing for fine-tuning """) with gr.Row(): with gr.Column(): input_text = gr.Textbox( label="Enter your prompt", placeholder="Type your prompt here...", lines=4 ) max_tokens = gr.Slider( minimum=32, maximum=1024, value=256, step=32, label="Max new tokens" ) submit_btn = gr.Button("Generate Response") with gr.Column(): output_text = gr.Textbox( label="Model Response", lines=10 ) submit_btn.click( fn=generate_response, inputs=[input_text, max_tokens], outputs=output_text ) gr.Markdown(""" ### Note This is a placeholder application. The actual fine-tuned model will be deployed to this space once training is complete. """) # Launch the app if __name__ == "__main__": demo.launch()