Spaces:
Sleeping
Sleeping
Upload run_cloud_training.py with huggingface_hub
Browse files- run_cloud_training.py +119 -49
run_cloud_training.py
CHANGED
@@ -5,7 +5,7 @@ Simplified fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit
|
|
5 |
- Optimized for L40S GPU
|
6 |
- Works with pre-tokenized datasets
|
7 |
- Research training only (no inference)
|
8 |
-
-
|
9 |
"""
|
10 |
|
11 |
import os
|
@@ -24,6 +24,9 @@ from huggingface_hub import HfApi, upload_folder
|
|
24 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
|
25 |
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
|
26 |
|
|
|
|
|
|
|
27 |
# Default dataset with proper namespace
|
28 |
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"
|
29 |
|
@@ -36,45 +39,77 @@ def is_running_in_space():
|
|
36 |
"""Check if we're running in a Hugging Face Space"""
|
37 |
return os.environ.get("SPACE_ID") is not None
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Check if fully compatible CUDA is available for training
|
40 |
-
def is_cuda_fully_available():
|
41 |
"""
|
42 |
Check if CUDA is fully available for training with bitsandbytes.
|
43 |
More strict than torch.cuda.is_available() - requires full GPU compatibility.
|
44 |
"""
|
45 |
-
# If
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
if is_running_in_space() and os.environ.get("FORCE_GPU") != "1":
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# If CUDA is not available according to PyTorch, we definitely can't use it
|
51 |
-
if not
|
52 |
logger.warning("CUDA not available according to PyTorch")
|
53 |
return False
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
import bitsandbytes as bnb
|
58 |
-
logger.info("BitsAndBytes package is installed")
|
59 |
-
|
60 |
-
# Try to create a dummy 4-bit computation to verify compatibility
|
61 |
try:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
-
logger.warning(f"
|
70 |
return False
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
return False
|
75 |
-
except Exception as e:
|
76 |
-
logger.warning(f"Unexpected error checking BitsAndBytes: {str(e)}")
|
77 |
-
return False
|
78 |
|
79 |
# Create a marker file to indicate training is active
|
80 |
def create_training_marker(output_dir):
|
@@ -345,14 +380,19 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
345 |
# Load and prepare dataset with proper sorting
|
346 |
dataset = load_and_prepare_dataset(dataset_name, config)
|
347 |
|
348 |
-
# Determine if we can use CUDA with bitsandbytes
|
349 |
-
can_use_4bit = is_cuda_fully_available()
|
350 |
-
|
351 |
# Load model settings
|
352 |
original_model_name = model_config.get("model_name_or_path")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
-
# For CPU mode, use a smaller model
|
355 |
-
if not can_use_4bit and is_running_in_space():
|
356 |
model_name = get_small_model_name(original_model_name)
|
357 |
logger.warning(f"Using smaller model {model_name} in CPU mode for Hugging Face Space")
|
358 |
else:
|
@@ -372,17 +412,31 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
372 |
quant_config = config.get("quantization_config", {})
|
373 |
|
374 |
# Determine if we should use 4-bit quantization
|
375 |
-
|
|
|
|
|
|
|
|
|
376 |
use_4bit = True
|
377 |
logger.info("Using 4-bit quantization with CUDA")
|
378 |
else:
|
379 |
use_4bit = False
|
380 |
logger.warning("Using CPU mode without quantization")
|
381 |
|
382 |
-
#
|
383 |
-
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
# Create quantization config for GPU
|
387 |
bnb_config = BitsAndBytesConfig(
|
388 |
load_in_4bit=True,
|
@@ -441,7 +495,7 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
441 |
logger.info("Successfully applied LoRA")
|
442 |
|
443 |
# Always use minimal batch size for HF Space CPU
|
444 |
-
if is_running_in_space() and not can_use_4bit:
|
445 |
per_device_train_batch_size = 1
|
446 |
logger.warning("Using minimal batch size for CPU training in Hugging Face Space")
|
447 |
else:
|
@@ -463,12 +517,28 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
463 |
per_device_train_batch_size = 1
|
464 |
logger.warning("No GPU detected - using minimal batch size for CPU training")
|
465 |
|
466 |
-
#
|
467 |
-
if
|
468 |
-
num_train_epochs = 1
|
469 |
-
logger.warning("Reducing to 1 epoch for CPU training in Space")
|
470 |
-
else:
|
471 |
num_train_epochs = training_config.get("num_train_epochs", 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
|
473 |
# Configure reporting backends
|
474 |
reports = training_config.get("report_to", ["tensorboard"])
|
@@ -479,26 +549,26 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
479 |
output_dir=output_dir,
|
480 |
num_train_epochs=num_train_epochs,
|
481 |
per_device_train_batch_size=per_device_train_batch_size,
|
482 |
-
gradient_accumulation_steps=
|
483 |
learning_rate=training_config.get("learning_rate", 2e-5),
|
484 |
lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
|
485 |
warmup_ratio=training_config.get("warmup_ratio", 0.03),
|
486 |
weight_decay=training_config.get("weight_decay", 0.01),
|
487 |
optim=training_config.get("optim", "adamw_torch"),
|
488 |
-
fp16=
|
489 |
-
bf16=
|
490 |
max_grad_norm=training_config.get("max_grad_norm", 0.3),
|
491 |
logging_steps=training_config.get("logging_steps", 10),
|
492 |
save_steps=training_config.get("save_steps", 200),
|
493 |
save_total_limit=training_config.get("save_total_limit", 3),
|
494 |
-
evaluation_strategy=
|
495 |
-
load_best_model_at_end=
|
496 |
report_to=reports,
|
497 |
logging_first_step=training_config.get("logging_first_step", True),
|
498 |
disable_tqdm=training_config.get("disable_tqdm", False),
|
499 |
remove_unused_columns=False,
|
500 |
-
gradient_checkpointing=
|
501 |
-
dataloader_num_workers=
|
502 |
)
|
503 |
|
504 |
# Create trainer with pre-tokenized collator
|
|
|
5 |
- Optimized for L40S GPU
|
6 |
- Works with pre-tokenized datasets
|
7 |
- Research training only (no inference)
|
8 |
+
- CLOUD BASED TRAINING - Hugging Face Spaces
|
9 |
"""
|
10 |
|
11 |
import os
|
|
|
24 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
|
25 |
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
|
26 |
|
27 |
+
# Force GPU mode in Space if we're using a pre-quantized model
|
28 |
+
os.environ["FORCE_GPU"] = "1"
|
29 |
+
|
30 |
# Default dataset with proper namespace
|
31 |
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"
|
32 |
|
|
|
39 |
"""Check if we're running in a Hugging Face Space"""
|
40 |
return os.environ.get("SPACE_ID") is not None
|
41 |
|
42 |
+
# Check if a model is pre-quantized (4-bit or 8-bit)
|
43 |
+
def is_model_pre_quantized(model_name):
|
44 |
+
"""Check if model is already pre-quantized based on name"""
|
45 |
+
pre_quantized_keywords = ["bnb-4bit", "4bit", "8bit", "quantized", "unsloth"]
|
46 |
+
return any(keyword in model_name.lower() for keyword in pre_quantized_keywords)
|
47 |
+
|
48 |
+
# Check if GPU is available
|
49 |
+
def is_gpu_available():
|
50 |
+
"""Simple check if CUDA is available according to PyTorch"""
|
51 |
+
return torch.cuda.is_available()
|
52 |
+
|
53 |
# Check if fully compatible CUDA is available for training
|
54 |
+
def is_cuda_fully_available(model_name):
|
55 |
"""
|
56 |
Check if CUDA is fully available for training with bitsandbytes.
|
57 |
More strict than torch.cuda.is_available() - requires full GPU compatibility.
|
58 |
"""
|
59 |
+
# If model is pre-quantized and we're in a Space with GPU selected, trust it
|
60 |
+
if is_running_in_space() and is_model_pre_quantized(model_name) and is_gpu_available():
|
61 |
+
logger.info("Pre-quantized model detected with GPU in Hugging Face Space - using GPU mode")
|
62 |
+
return True
|
63 |
+
|
64 |
+
# For non-Space environments, or non-pre-quantized models, do detailed checks
|
65 |
+
|
66 |
+
# If FORCE_GPU is set, trust that
|
67 |
+
if os.environ.get("FORCE_GPU") == "1":
|
68 |
+
logger.info("GPU mode forced by environment variable")
|
69 |
+
return True
|
70 |
+
|
71 |
+
# If running in Space and FORCE_GPU not explicitly set, be cautious
|
72 |
if is_running_in_space() and os.environ.get("FORCE_GPU") != "1":
|
73 |
+
# Check if CUDA is actually available
|
74 |
+
if is_gpu_available():
|
75 |
+
logger.info("GPU detected in Hugging Face Space")
|
76 |
+
return True
|
77 |
+
else:
|
78 |
+
logger.warning("No GPU detected in Hugging Face Space despite hardware selection")
|
79 |
+
return False
|
80 |
|
81 |
# If CUDA is not available according to PyTorch, we definitely can't use it
|
82 |
+
if not is_gpu_available():
|
83 |
logger.warning("CUDA not available according to PyTorch")
|
84 |
return False
|
85 |
|
86 |
+
# Only test bitsandbytes if necessary (not for pre-quantized models)
|
87 |
+
if not is_model_pre_quantized(model_name):
|
|
|
|
|
|
|
|
|
88 |
try:
|
89 |
+
import bitsandbytes as bnb
|
90 |
+
logger.info("BitsAndBytes package is installed")
|
91 |
+
|
92 |
+
# Try to create a dummy 4-bit computation to verify compatibility
|
93 |
+
try:
|
94 |
+
dummy = torch.zeros(1, device="cuda")
|
95 |
+
a = bnb.nn.Linear4bit(1, 1)
|
96 |
+
a.to(device="cuda")
|
97 |
+
result = a(dummy)
|
98 |
+
logger.info("BitsAndBytes with CUDA is working correctly")
|
99 |
+
return True
|
100 |
+
except Exception as e:
|
101 |
+
logger.warning(f"BitsAndBytes CUDA compatibility test failed: {str(e)}")
|
102 |
+
return False
|
103 |
+
|
104 |
+
except ImportError:
|
105 |
+
logger.warning("BitsAndBytes package not installed - cannot use 4-bit quantization")
|
106 |
+
return False
|
107 |
except Exception as e:
|
108 |
+
logger.warning(f"Unexpected error checking BitsAndBytes: {str(e)}")
|
109 |
return False
|
110 |
+
|
111 |
+
# For pre-quantized models without bitsandbytes test
|
112 |
+
return is_gpu_available()
|
|
|
|
|
|
|
|
|
113 |
|
114 |
# Create a marker file to indicate training is active
|
115 |
def create_training_marker(output_dir):
|
|
|
380 |
# Load and prepare dataset with proper sorting
|
381 |
dataset = load_and_prepare_dataset(dataset_name, config)
|
382 |
|
|
|
|
|
|
|
383 |
# Load model settings
|
384 |
original_model_name = model_config.get("model_name_or_path")
|
385 |
+
|
386 |
+
# Special handling for pre-quantized models like unsloth models
|
387 |
+
is_pre_quantized = is_model_pre_quantized(original_model_name)
|
388 |
+
if is_pre_quantized:
|
389 |
+
logger.info(f"Detected pre-quantized model: {original_model_name}")
|
390 |
+
|
391 |
+
# Determine if we can use CUDA with bitsandbytes
|
392 |
+
can_use_4bit = is_cuda_fully_available(original_model_name)
|
393 |
|
394 |
+
# For CPU mode, use a smaller model (unless pre-quantized)
|
395 |
+
if not can_use_4bit and is_running_in_space() and not is_pre_quantized:
|
396 |
model_name = get_small_model_name(original_model_name)
|
397 |
logger.warning(f"Using smaller model {model_name} in CPU mode for Hugging Face Space")
|
398 |
else:
|
|
|
412 |
quant_config = config.get("quantization_config", {})
|
413 |
|
414 |
# Determine if we should use 4-bit quantization
|
415 |
+
# Pre-quantized models always use their built-in quantization
|
416 |
+
if is_pre_quantized:
|
417 |
+
use_4bit = True
|
418 |
+
logger.info("Using pre-quantized model with built-in quantization")
|
419 |
+
elif can_use_4bit and quant_config.get("load_in_4bit", True):
|
420 |
use_4bit = True
|
421 |
logger.info("Using 4-bit quantization with CUDA")
|
422 |
else:
|
423 |
use_4bit = False
|
424 |
logger.warning("Using CPU mode without quantization")
|
425 |
|
426 |
+
# For pre-quantized models, always use device_map="auto"
|
427 |
+
if is_pre_quantized and is_gpu_available():
|
428 |
+
logger.info("Loading pre-quantized model with GPU support")
|
429 |
+
model = AutoModelForCausalLM.from_pretrained(
|
430 |
+
model_name,
|
431 |
+
device_map="auto",
|
432 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
433 |
+
trust_remote_code=True,
|
434 |
+
use_cache=model_config.get("use_cache", False)
|
435 |
+
)
|
436 |
+
# Create model with proper configuration for non-pre-quantized models
|
437 |
+
elif use_4bit and not is_pre_quantized:
|
438 |
+
logger.info(f"Loading model with 4-bit quantization")
|
439 |
+
|
440 |
# Create quantization config for GPU
|
441 |
bnb_config = BitsAndBytesConfig(
|
442 |
load_in_4bit=True,
|
|
|
495 |
logger.info("Successfully applied LoRA")
|
496 |
|
497 |
# Always use minimal batch size for HF Space CPU
|
498 |
+
if is_running_in_space() and not can_use_4bit and not is_pre_quantized:
|
499 |
per_device_train_batch_size = 1
|
500 |
logger.warning("Using minimal batch size for CPU training in Hugging Face Space")
|
501 |
else:
|
|
|
517 |
per_device_train_batch_size = 1
|
518 |
logger.warning("No GPU detected - using minimal batch size for CPU training")
|
519 |
|
520 |
+
# Use full training parameters for pre-quantized models or GPU mode
|
521 |
+
if is_pre_quantized or can_use_4bit or not is_running_in_space():
|
|
|
|
|
|
|
522 |
num_train_epochs = training_config.get("num_train_epochs", 3)
|
523 |
+
gradient_accumulation_steps = training_config.get("gradient_accumulation_steps", 4)
|
524 |
+
fp16 = torch.cuda.is_available() and hardware_config.get("fp16", True)
|
525 |
+
bf16 = torch.cuda.is_available() and hardware_config.get("bf16", False)
|
526 |
+
gradient_checkpointing = torch.cuda.is_available() and hardware_config.get("gradient_checkpointing", True)
|
527 |
+
dataloader_workers = training_config.get("dataloader_num_workers", 4)
|
528 |
+
evaluation_strategy = training_config.get("evaluation_strategy", "steps")
|
529 |
+
load_best_model_at_end = training_config.get("load_best_model_at_end", True)
|
530 |
+
logger.info("Using full training parameters for GPU mode")
|
531 |
+
else:
|
532 |
+
# For Space CPU training mode, use minimal parameters
|
533 |
+
num_train_epochs = 1
|
534 |
+
gradient_accumulation_steps = 1
|
535 |
+
fp16 = False
|
536 |
+
bf16 = False
|
537 |
+
gradient_checkpointing = False
|
538 |
+
dataloader_workers = 0
|
539 |
+
evaluation_strategy = "no"
|
540 |
+
load_best_model_at_end = False
|
541 |
+
logger.warning("Using minimal parameters for CPU training in Space")
|
542 |
|
543 |
# Configure reporting backends
|
544 |
reports = training_config.get("report_to", ["tensorboard"])
|
|
|
549 |
output_dir=output_dir,
|
550 |
num_train_epochs=num_train_epochs,
|
551 |
per_device_train_batch_size=per_device_train_batch_size,
|
552 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
553 |
learning_rate=training_config.get("learning_rate", 2e-5),
|
554 |
lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
|
555 |
warmup_ratio=training_config.get("warmup_ratio", 0.03),
|
556 |
weight_decay=training_config.get("weight_decay", 0.01),
|
557 |
optim=training_config.get("optim", "adamw_torch"),
|
558 |
+
fp16=fp16,
|
559 |
+
bf16=bf16,
|
560 |
max_grad_norm=training_config.get("max_grad_norm", 0.3),
|
561 |
logging_steps=training_config.get("logging_steps", 10),
|
562 |
save_steps=training_config.get("save_steps", 200),
|
563 |
save_total_limit=training_config.get("save_total_limit", 3),
|
564 |
+
evaluation_strategy=evaluation_strategy,
|
565 |
+
load_best_model_at_end=load_best_model_at_end,
|
566 |
report_to=reports,
|
567 |
logging_first_step=training_config.get("logging_first_step", True),
|
568 |
disable_tqdm=training_config.get("disable_tqdm", False),
|
569 |
remove_unused_columns=False,
|
570 |
+
gradient_checkpointing=gradient_checkpointing,
|
571 |
+
dataloader_num_workers=dataloader_workers
|
572 |
)
|
573 |
|
574 |
# Create trainer with pre-tokenized collator
|