File size: 4,841 Bytes
404b247
 
 
be22f80
404b247
be22f80
 
 
 
 
 
 
 
 
 
404b247
be22f80
 
 
 
 
 
404b247
be22f80
 
 
 
 
 
 
 
 
404b247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be22f80
404b247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be22f80
404b247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be22f80
404b247
be22f80
404b247
 
 
be22f80
404b247
 
 
 
be22f80
404b247
 
 
be22f80
404b247
be22f80
 
 
404b247
 
 
 
 
 
 
 
 
 
 
 
 
 
be22f80
404b247
 
 
be22f80
404b247
 
 
 
be22f80
404b247
 
 
be22f80
404b247
be22f80
 
 
404b247
 
 
 
 
 
 
 
 
 
 
 
 
be22f80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import gradio as gr
from openai import OpenAI
from utils import EN_US

ZH2EN = {
    "请先在设置中配置有效 API 密钥": "Please set valid api keys in settings first.",
    "⚙️ 设置": "⚙️ Settings",
    "模型选择": "Select a model",
    "API 密钥": "API key",
    "系统提示词": "System prompt",
    "最大 token 数": "Max new tokens",
    "温度参数": "Temperature",
    "Top-P 采样": "Top P sampling",
}


def _L(zh_txt: str):
    return ZH2EN[zh_txt] if EN_US else zh_txt


def predict(msg, history, system_prompt, model, api_url, api_key, max_tk, temp, top_p):
    try:
        if not api_key:
            raise ValueError(_L("请先在设置中配置有效 API 密钥"))

        msgs = [{"role": "system", "content": system_prompt}]
        for user, assistant in history:
            msgs.append({"role": "user", "content": user})
            msgs.append({"role": "system", "content": assistant})

        msgs.append({"role": "user", "content": msg})
        client = OpenAI(api_key=api_key, base_url=api_url)
        response = client.chat.completions.create(
            model=model,
            messages=msgs,
            max_tokens=max_tk,
            temperature=temp,
            top_p=top_p,
            stream=False,
        ).to_dict()["choices"][0]["message"]["content"]

    except Exception as e:
        response = f"{e}"

    return response


def deepseek(message, history, model, api_key, system_prompt, max_tk, temp, top_p):
    response = predict(
        message,
        history,
        system_prompt,
        model,
        "https://api.deepseek.com",
        api_key,
        max_tk,
        temp,
        top_p,
    )
    outputs = []
    for new_token in response:
        outputs.append(new_token)
        yield "".join(outputs)


def kimi(message, history, model, api_key, system_prompt, max_tk, temp, top_p):
    response = predict(
        message,
        history,
        system_prompt,
        model,
        "https://api.moonshot.cn/v1",
        api_key,
        max_tk,
        temp,
        top_p,
    )
    outputs = []
    for new_token in response:
        outputs.append(new_token)
        yield "".join(outputs)


def LLM_APIs():
    with gr.Blocks() as apis:
        with gr.Tab("DeepSeek"):
            with gr.Accordion(label=_L("⚙️ 设置"), open=False) as ds_acc:
                ds_model = gr.Dropdown(
                    choices=["deepseek-chat", "deepseek-reasoner"],
                    value="deepseek-chat",
                    label=_L("模型选择"),
                )
                ds_key = gr.Textbox(
                    os.getenv("ds_api_key"),
                    type="password",
                    label=_L("API 密钥"),
                )
                ds_sys = gr.Textbox(
                    "You are a useful assistant. first recognize user request and then reply carfuly and thinking",
                    label=_L("系统提示词"),
                )
                ds_maxtk = gr.Slider(0, 32000, 10000, label=_L("最大 token 数"))
                ds_temp = gr.Slider(0, 1, 0.3, label=_L("温度参数"))
                ds_topp = gr.Slider(0, 1, 0.95, label=_L("Top-P 采样"))

            gr.ChatInterface(
                deepseek,
                additional_inputs=[
                    ds_model,
                    ds_key,
                    ds_sys,
                    ds_maxtk,
                    ds_temp,
                    ds_topp,
                ],
            )

        with gr.Tab("Kimi"):
            with gr.Accordion(label=_L("⚙️ 设置"), open=False) as kimi_acc:
                kimi_model = gr.Dropdown(
                    choices=["moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k"],
                    value="moonshot-v1-32k",
                    label=_L("模型选择"),
                )
                kimi_key = gr.Textbox(
                    os.getenv("kimi_api_key"),
                    type="password",
                    label=_L("API 密钥"),
                )
                kimi_sys = gr.Textbox(
                    "You are a useful assistant. first recognize user request and then reply carfuly and thinking",
                    label=_L("系统提示词"),
                )
                kimi_maxtk = gr.Slider(0, 32000, 10000, label=_L("最大 token 数"))
                kimi_temp = gr.Slider(0, 1, 0.3, label=_L("温度参数"))
                kimi_topp = gr.Slider(0, 1, 0.95, label=_L("Top-P 采样"))

            gr.ChatInterface(
                kimi,
                additional_inputs=[
                    kimi_model,
                    kimi_key,
                    kimi_sys,
                    kimi_maxtk,
                    kimi_temp,
                    kimi_topp,
                ],
            )

    return apis.queue()