Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
8505a8f
1
Parent(s):
31b10c8
fix: enhance audio processing in transcribe function with librosa and improve transcription output
Browse files
app.py
CHANGED
@@ -23,12 +23,13 @@ def load_model():
|
|
23 |
print(f"Model loaded on device: {model.device}")
|
24 |
return model
|
25 |
|
26 |
-
|
27 |
@spaces.GPU(duration=120)
|
28 |
def transcribe(audio, state=""):
|
29 |
# Load the model inside the GPU worker process
|
30 |
import numpy as np
|
31 |
import soundfile as sf
|
|
|
|
|
32 |
model = load_model()
|
33 |
|
34 |
if audio is None or isinstance(audio, int):
|
@@ -36,17 +37,13 @@ def transcribe(audio, state=""):
|
|
36 |
return state, state
|
37 |
print(f"Received audio input of type: {type(audio)}")
|
38 |
print(f"Audio shape: {audio.shape if isinstance(audio, np.ndarray) else 'N/A'}")
|
39 |
-
|
40 |
-
# if isinstance(audio, tuple):
|
41 |
-
# print(f"Tuple contents: {audio}")
|
42 |
-
# # Try extracting the first element
|
43 |
-
# audio = audio[1] if len(audio) > 1 else None
|
44 |
-
|
45 |
if isinstance(audio, tuple) and len(audio) == 2 and isinstance(audio[1], np.ndarray):
|
46 |
# Handle tuple of (sample_rate, audio_array)
|
47 |
print(f"Tuple contents: {audio}")
|
48 |
sample_rate, audio_data = audio
|
49 |
-
try:
|
|
|
50 |
if sample_rate != 16000:
|
51 |
print(f"Resampling from {sample_rate}Hz to 16000Hz")
|
52 |
audio_data = librosa.resample(audio_data.astype(float), orig_sr=sample_rate, target_sr=16000)
|
@@ -55,17 +52,20 @@ def transcribe(audio, state=""):
|
|
55 |
sf.write(temp_file, audio_data, samplerate=16000)
|
56 |
print(f"Processing temporary audio file: {temp_file}")
|
57 |
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
os.remove(temp_file) # Clean up
|
62 |
print("Temporary file removed.")
|
63 |
except Exception as e:
|
64 |
print(f"Error processing audio: {e}")
|
65 |
-
|
66 |
|
67 |
new_state = state + " " + transcription if state else transcription
|
68 |
-
print(new_state)
|
69 |
return new_state, new_state
|
70 |
return state, state
|
71 |
|
|
|
23 |
print(f"Model loaded on device: {model.device}")
|
24 |
return model
|
25 |
|
|
|
26 |
@spaces.GPU(duration=120)
|
27 |
def transcribe(audio, state=""):
|
28 |
# Load the model inside the GPU worker process
|
29 |
import numpy as np
|
30 |
import soundfile as sf
|
31 |
+
import librosa
|
32 |
+
import os
|
33 |
model = load_model()
|
34 |
|
35 |
if audio is None or isinstance(audio, int):
|
|
|
37 |
return state, state
|
38 |
print(f"Received audio input of type: {type(audio)}")
|
39 |
print(f"Audio shape: {audio.shape if isinstance(audio, np.ndarray) else 'N/A'}")
|
40 |
+
|
|
|
|
|
|
|
|
|
|
|
41 |
if isinstance(audio, tuple) and len(audio) == 2 and isinstance(audio[1], np.ndarray):
|
42 |
# Handle tuple of (sample_rate, audio_array)
|
43 |
print(f"Tuple contents: {audio}")
|
44 |
sample_rate, audio_data = audio
|
45 |
+
try:
|
46 |
+
# Resample to 16kHz for NeMo
|
47 |
if sample_rate != 16000:
|
48 |
print(f"Resampling from {sample_rate}Hz to 16000Hz")
|
49 |
audio_data = librosa.resample(audio_data.astype(float), orig_sr=sample_rate, target_sr=16000)
|
|
|
52 |
sf.write(temp_file, audio_data, samplerate=16000)
|
53 |
print(f"Processing temporary audio file: {temp_file}")
|
54 |
|
55 |
+
# Transcribe and extract only the text (string)
|
56 |
+
hypothesis = model.transcribe([temp_file])[0]
|
57 |
+
print(f"Hypothesis: {hypothesis}")
|
58 |
+
transcription = hypothesis.text # Extract the text attribute (string)
|
59 |
+
print(f"Transcription: {transcription}")
|
60 |
|
61 |
os.remove(temp_file) # Clean up
|
62 |
print("Temporary file removed.")
|
63 |
except Exception as e:
|
64 |
print(f"Error processing audio: {e}")
|
65 |
+
return state, state
|
66 |
|
67 |
new_state = state + " " + transcription if state else transcription
|
68 |
+
print(f"New state: {new_state}")
|
69 |
return new_state, new_state
|
70 |
return state, state
|
71 |
|