Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
779d79b
1
Parent(s):
fe027e3
fix: improve audio processing in transcribe function and add soundfile dependency
Browse files- app.py +31 -36
- requirements.txt +1 -0
app.py
CHANGED
@@ -15,45 +15,40 @@ model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/parakeet-tdt-
|
|
15 |
|
16 |
print(f"Model loaded on device: {model.device}")
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
def transcribe(audio, state=""):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Skip processing if no audio is provided
|
24 |
-
if audio is None:
|
25 |
return state, state
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Process the audio with the ASR model
|
47 |
-
with torch.no_grad():
|
48 |
-
transcription = model.transcribe([audio])[0]
|
49 |
-
|
50 |
-
# Append new transcription to the state
|
51 |
-
if state == "":
|
52 |
-
new_state = transcription
|
53 |
-
else:
|
54 |
-
new_state = state + " " + transcription
|
55 |
-
model.cpu()
|
56 |
-
return new_state, new_state
|
57 |
|
58 |
# Define the Gradio interface
|
59 |
with gr.Blocks(title="Real-time Speech-to-Text with NeMo") as demo:
|
@@ -91,7 +86,7 @@ with gr.Blocks(title="Real-time Speech-to-Text with NeMo") as demo:
|
|
91 |
inputs=[audio_input, state],
|
92 |
outputs=[state, streaming_text],
|
93 |
)
|
94 |
-
|
95 |
# Clear the transcription
|
96 |
def clear_transcription():
|
97 |
return "", "", ""
|
|
|
15 |
|
16 |
print(f"Model loaded on device: {model.device}")
|
17 |
|
18 |
+
import numpy as np
|
19 |
+
import soundfile as sf
|
20 |
+
audio_buffer = []
|
21 |
+
|
22 |
+
@spaces.GPU(duration=120)
|
23 |
def transcribe(audio, state=""):
|
24 |
+
global model, audio_buffer
|
25 |
+
if audio is None or isinstance(audio, int):
|
26 |
+
print(f"Skipping invalid audio input: {type(audio)}")
|
|
|
|
|
27 |
return state, state
|
28 |
|
29 |
+
# Append NumPy array to buffer
|
30 |
+
if isinstance(audio, np.ndarray):
|
31 |
+
audio_buffer.append(audio)
|
32 |
+
# Process if buffer has enough data (e.g., 5 seconds at 16kHz)
|
33 |
+
if len(np.concatenate(audio_buffer)) >= 5 * 16000:
|
34 |
+
# Concatenate and preprocess
|
35 |
+
audio_data = np.concatenate(audio_buffer)
|
36 |
+
audio_data = audio_data.mean(axis=1) if audio_data.ndim > 1 else audio_data # To mono
|
37 |
+
temp_file = "temp_audio.wav"
|
38 |
+
sf.write(temp_file, audio_data, samplerate=16000)
|
39 |
|
40 |
+
# Transcribe
|
41 |
+
if torch.cuda.is_available():
|
42 |
+
model = model.cuda()
|
43 |
+
transcription = model.transcribe([temp_file])[0]
|
44 |
+
model = model.cpu()
|
45 |
+
os.remove(temp_file)
|
46 |
+
|
47 |
+
# Clear buffer
|
48 |
+
audio_buffer = []
|
49 |
+
new_state = state + " " + transcription if state else transcription
|
50 |
+
return new_state, new_state
|
51 |
+
return state, state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Define the Gradio interface
|
54 |
with gr.Blocks(title="Real-time Speech-to-Text with NeMo") as demo:
|
|
|
86 |
inputs=[audio_input, state],
|
87 |
outputs=[state, streaming_text],
|
88 |
)
|
89 |
+
|
90 |
# Clear the transcription
|
91 |
def clear_transcription():
|
92 |
return "", "", ""
|
requirements.txt
CHANGED
@@ -4,3 +4,4 @@ nemo_toolkit[asr]>=1.18.0
|
|
4 |
omegaconf>=2.2.0
|
5 |
numpy>=1.22.0
|
6 |
cuda-python>=12.3
|
|
|
|
4 |
omegaconf>=2.2.0
|
5 |
numpy>=1.22.0
|
6 |
cuda-python>=12.3
|
7 |
+
soundfile
|