import streamlit as st import yfinance as yf import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy.optimize as sco def get_stock_data(tickers, start, end): data = yf.download(tickers, start=start, end=end) if data.empty: st.error("Data saham tidak ditemukan. Periksa ticker atau rentang tanggal.") return None if 'Adj Close' in data.columns: return data['Adj Close'] elif 'Close' in data.columns: st.warning("Menggunakan 'Close' karena 'Adj Close' tidak tersedia.") return data['Close'] else: st.error("Data harga penutupan tidak ditemukan.") return None def calculate_returns(data): log_returns = np.log(data / data.shift(1)) return log_returns.mean() * 252, log_returns.cov() * 252 def optimize_portfolio(returns, cov_matrix): num_assets = len(returns) def sharpe_ratio(weights): portfolio_return = np.dot(weights, returns) portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) return -portfolio_return / portfolio_volatility constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) bounds = tuple((0, 1) for _ in range(num_assets)) init_guess = num_assets * [1. / num_assets] result = sco.minimize(sharpe_ratio, init_guess, method='SLSQP', bounds=bounds, constraints=constraints) return result.x if result.success else None def generate_efficient_frontier(returns, cov_matrix, num_portfolios=5000): num_assets = len(returns) results = np.zeros((3, num_portfolios)) for i in range(num_portfolios): weights = np.random.dirichlet(np.ones(num_assets), size=1)[0] portfolio_return = np.dot(weights, returns) portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) sharpe_ratio = portfolio_return / portfolio_volatility results[0, i] = portfolio_return results[1, i] = portfolio_volatility results[2, i] = sharpe_ratio return results def plot_correlation_heatmap(data): correlation_matrix = data.corr() fig, ax = plt.subplots() sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", ax=ax) st.pyplot(fig) def plot_moving_averages(data, stock): fig, ax = plt.subplots() data[stock].plot(label='Harga', ax=ax) data[stock].rolling(window=50).mean().plot(label='SMA 50', ax=ax) data[stock].rolling(window=200).mean().plot(label='SMA 200', ax=ax) ax.legend() st.pyplot(fig) def simulate_dca(data, investment_amount=100): investment_dates = data.index[::30] dca_values = data.loc[investment_dates].mean(axis=1) * investment_amount total_value = dca_values.cumsum() fig, ax = plt.subplots() total_value.plot(ax=ax, title='Simulasi Investasi DCA') st.pyplot(fig) st.title("Analisis Portofolio Saham Optimal (Model Markowitz)") st.write("Rekomendasi Saham yang Bertahan Saat COVID-19:") st.write("KLBF.JK, SIDO.JK, KAEF.JK, TLKM.JK, UNVR.JK") tickers_list = st.text_input("Masukkan ticker saham", "KLBF.JK, SIDO.JK, KAEF.JK").split(", ") start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01")) end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2023-12-31")) if st.button("Analisis Portofolio"): stock_data = get_stock_data(tickers_list, start_date, end_date) if stock_data is not None: mean_returns, cov_matrix = calculate_returns(stock_data) optimal_weights = optimize_portfolio(mean_returns, cov_matrix) st.subheader("Statistik Saham") st.write(stock_data.describe()) st.subheader("Heatmap Korelasi Saham") plot_correlation_heatmap(stock_data) st.subheader("Moving Average untuk Prediksi Tren") selected_stock = st.selectbox("Pilih saham untuk analisis MA", stock_data.columns) plot_moving_averages(stock_data, selected_stock) st.subheader("Simulasi Investasi Dollar Cost Averaging (DCA)") simulate_dca(stock_data) if optimal_weights is not None: st.subheader("Bobot Portofolio Optimal") portfolio_weights = {stock: weight for stock, weight in zip(stock_data.columns, optimal_weights)} st.write(portfolio_weights) # Pie Chart dengan pengelompokan saham kecil ke "Others" threshold = 0.05 large_weights = {k: v for k, v in portfolio_weights.items() if v >= threshold} small_weights = {k: v for k, v in portfolio_weights.items() if v < threshold} if small_weights: large_weights["Others"] = sum(small_weights.values()) fig, ax = plt.subplots() ax.pie(large_weights.values(), labels=large_weights.keys(), autopct='%1.1f%%', startangle=140) ax.axis('equal') st.pyplot(fig) # Efficient Frontier results = generate_efficient_frontier(mean_returns, cov_matrix) st.subheader("Efficient Frontier") fig, ax = plt.subplots() scatter = ax.scatter(results[1, :], results[0, :], c=results[2, :], cmap="viridis", marker='o') ax.set_xlabel("Risiko (Standar Deviasi)") ax.set_ylabel("Return Tahunan") ax.set_title("Efficient Frontier") fig.colorbar(scatter, label="Sharpe Ratio") st.pyplot(fig) else: st.error("Optimasi portofolio gagal. Coba dengan saham yang berbeda.")