Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,32 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
import yfinance as yf
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
-
from scipy.optimize import minimize
|
7 |
|
8 |
# Fungsi untuk mengunduh data saham
|
9 |
def get_stock_data(tickers, start, end):
|
10 |
data = yf.download(tickers, start=start, end=end)
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
14 |
return data['Adj Close']
|
|
|
|
|
15 |
else:
|
16 |
-
st.error("Kolom 'Adj Close' tidak ditemukan.
|
17 |
return None
|
18 |
|
19 |
-
# Fungsi untuk menghitung return harian
|
20 |
-
def calculate_daily_returns(data):
|
21 |
-
return data.pct_change().dropna()
|
22 |
-
|
23 |
-
# Fungsi untuk menghitung portofolio optimal dengan Model Markowitz
|
24 |
-
def optimize_portfolio(returns):
|
25 |
-
num_assets = len(returns.columns)
|
26 |
-
weights = np.random.random(num_assets)
|
27 |
-
weights /= np.sum(weights)
|
28 |
-
|
29 |
-
def portfolio_performance(weights):
|
30 |
-
port_return = np.sum(returns.mean() * weights) * 252
|
31 |
-
port_volatility = np.sqrt(np.dot(weights.T, np.dot(returns.cov() * 252, weights)))
|
32 |
-
return port_volatility
|
33 |
-
|
34 |
-
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
|
35 |
-
bounds = tuple((0, 1) for _ in range(num_assets))
|
36 |
-
result = minimize(portfolio_performance, weights, method='SLSQP', bounds=bounds, constraints=constraints)
|
37 |
-
|
38 |
-
return result.x
|
39 |
-
|
40 |
# Streamlit UI
|
41 |
-
st.title("Analisis Portofolio Saham
|
42 |
-
|
43 |
-
# Input pengguna untuk daftar saham
|
44 |
-
tickers = st.text_input("Masukkan kode saham (pisahkan dengan koma)", "BBCA.JK,TLKM.JK,UNVR.JK")
|
45 |
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
|
46 |
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2020-12-31"))
|
47 |
|
48 |
-
if st.button("
|
49 |
-
tickers_list = [t.strip() for t in tickers.split(',')]
|
50 |
data = get_stock_data(tickers_list, start_date, end_date)
|
51 |
-
|
52 |
-
|
53 |
-
st.write(
|
54 |
-
|
55 |
-
|
56 |
-
returns = calculate_daily_returns(data)
|
57 |
-
optimal_weights = optimize_portfolio(returns)
|
58 |
-
|
59 |
-
st.write("Bobot Optimal Portofolio:")
|
60 |
-
for ticker, weight in zip(tickers_list, optimal_weights):
|
61 |
-
st.write(f"{ticker}: {weight:.2%}")
|
62 |
-
|
63 |
-
# Visualisasi Portofolio
|
64 |
-
fig, ax = plt.subplots()
|
65 |
-
ax.pie(optimal_weights, labels=tickers_list, autopct='%1.1f%%', startangle=90)
|
66 |
-
ax.axis("equal")
|
67 |
-
st.pyplot(fig)
|
68 |
-
else:
|
69 |
-
st.error("Gagal mengambil data saham. Pastikan kode saham benar.")
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
|
|
5 |
|
6 |
# Fungsi untuk mengunduh data saham
|
7 |
def get_stock_data(tickers, start, end):
|
8 |
data = yf.download(tickers, start=start, end=end)
|
9 |
+
if data.empty:
|
10 |
+
st.error("Data saham tidak ditemukan. Periksa ticker atau tanggal.")
|
11 |
+
return None
|
12 |
+
elif 'Adj Close' in data.columns:
|
13 |
return data['Adj Close']
|
14 |
+
elif 'Close' in data.columns:
|
15 |
+
return data['Close']
|
16 |
else:
|
17 |
+
st.error("Kolom 'Adj Close' atau 'Close' tidak ditemukan.")
|
18 |
return None
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Streamlit UI
|
21 |
+
st.title("Analisis Portofolio Saham")
|
22 |
+
tickers_list = st.text_input("Masukkan ticker saham (contoh: BBCA.JK, TLKM.JK)", "BBCA.JK, TLKM.JK").split(",")
|
|
|
|
|
23 |
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
|
24 |
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2020-12-31"))
|
25 |
|
26 |
+
if st.button("Dapatkan Data"):
|
|
|
27 |
data = get_stock_data(tickers_list, start_date, end_date)
|
28 |
+
if data is not None:
|
29 |
+
st.write("Data Saham:")
|
30 |
+
st.write(data.tail())
|
31 |
+
# Plot harga saham
|
32 |
+
st.line_chart(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|