Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,49 +3,61 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
import yfinance as yf
|
5 |
import matplotlib.pyplot as plt
|
|
|
6 |
|
7 |
-
#Fungsi untuk mengunduh data saham
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
#Fungsi untuk menghitung portofolio optimal
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
results = np.zeros((3, num_portfolios))
|
16 |
-
weights_record = []
|
17 |
-
|
18 |
-
for i in range(num_portfolios):
|
19 |
weights = np.random.random(num_assets)
|
20 |
weights /= np.sum(weights)
|
21 |
-
weights_record.append(weights)
|
22 |
-
|
23 |
-
portfolio_return = np.sum(weights * mean_returns)
|
24 |
-
portfolio_stddev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
|
25 |
-
sharpe_ratio = portfolio_return / portfolio_stddev
|
26 |
-
|
27 |
-
results[0, i] = portfolio_return
|
28 |
-
results[1, i] = portfolio_stddev
|
29 |
-
results[2, i] = sharpe_ratio
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
return
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
if st.button("Optimasi Portofolio"): tickers_list = [ticker.strip() for ticker in tickers.split(",")] data = get_stock_data(tickers_list, start_date, end_date) optimal_portfolio = optimize_portfolio(data)
|
43 |
|
44 |
-
|
45 |
-
st.
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
st.
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
import yfinance as yf
|
5 |
import matplotlib.pyplot as plt
|
6 |
+
from scipy.optimize import minimize
|
7 |
|
8 |
+
# Fungsi untuk mengunduh data saham
|
9 |
+
def get_stock_data(tickers, start, end):
|
10 |
+
data = yf.download(tickers, start=start, end=end)['Adj Close']
|
11 |
+
return data
|
12 |
|
13 |
+
# Fungsi untuk menghitung return harian
|
14 |
+
def calculate_daily_returns(data):
|
15 |
+
return data.pct_change().dropna()
|
16 |
|
17 |
+
# Fungsi untuk menghitung portofolio optimal dengan Model Markowitz
|
18 |
+
def optimize_portfolio(returns):
|
19 |
+
num_assets = len(returns.columns)
|
|
|
|
|
|
|
|
|
|
|
20 |
weights = np.random.random(num_assets)
|
21 |
weights /= np.sum(weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
def portfolio_performance(weights):
|
24 |
+
port_return = np.sum(returns.mean() * weights) * 252
|
25 |
+
port_volatility = np.sqrt(np.dot(weights.T, np.dot(returns.cov() * 252, weights)))
|
26 |
+
return port_volatility
|
27 |
|
28 |
+
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
|
29 |
+
bounds = tuple((0, 1) for _ in range(num_assets))
|
30 |
+
result = minimize(portfolio_performance, weights, method='SLSQP', bounds=bounds, constraints=constraints)
|
31 |
+
|
32 |
+
return result.x
|
|
|
|
|
33 |
|
34 |
+
# Streamlit UI
|
35 |
+
st.title("Analisis Portofolio Saham Model Markowitz")
|
36 |
|
37 |
+
# Input pengguna untuk daftar saham
|
38 |
+
tickers = st.text_input("Masukkan kode saham (pisahkan dengan koma)", "BBCA.JK,TLKM.JK,UNVR.JK")
|
39 |
+
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
|
40 |
+
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2020-12-31"))
|
41 |
|
42 |
+
if st.button("Analisis"):
|
43 |
+
tickers_list = [t.strip() for t in tickers.split(',')]
|
44 |
+
data = get_stock_data(tickers_list, start_date, end_date)
|
45 |
+
|
46 |
+
if not data.empty:
|
47 |
+
st.write("Data Harga Saham")
|
48 |
+
st.line_chart(data)
|
49 |
+
|
50 |
+
returns = calculate_daily_returns(data)
|
51 |
+
optimal_weights = optimize_portfolio(returns)
|
52 |
+
|
53 |
+
st.write("Bobot Optimal Portofolio:")
|
54 |
+
for ticker, weight in zip(tickers_list, optimal_weights):
|
55 |
+
st.write(f"{ticker}: {weight:.2%}")
|
56 |
+
|
57 |
+
# Visualisasi Portofolio
|
58 |
+
fig, ax = plt.subplots()
|
59 |
+
ax.pie(optimal_weights, labels=tickers_list, autopct='%1.1f%%', startangle=90)
|
60 |
+
ax.axis("equal")
|
61 |
+
st.pyplot(fig)
|
62 |
+
else:
|
63 |
+
st.error("Gagal mengambil data saham. Pastikan kode saham benar.")
|