Spaces:
Sleeping
Sleeping
File size: 5,635 Bytes
2c4caee 99f2df0 2c4caee 99f2df0 2c4caee 99f2df0 2c4caee 99f2df0 8bce1e6 2c4caee 99f2df0 2c4caee 99f2df0 8bce1e6 1fcca35 2c4caee 99f2df0 2c4caee 8bce1e6 2c4caee eb92e9b 8bce1e6 b0e4499 8bce1e6 99f2df0 2c4caee 99f2df0 2c4caee 8bce1e6 99f2df0 2c4caee 8bce1e6 99f2df0 8bce1e6 99f2df0 b0e4499 eb92e9b 99f2df0 b0e4499 8bce1e6 2c4caee b0e4499 2c4caee 99f2df0 8bce1e6 2c4caee b0e4499 2c4caee 99f2df0 8bce1e6 2c4caee b0e4499 99f2df0 b0e4499 99f2df0 b0e4499 8bce1e6 99f2df0 2c4caee 8bce1e6 99f2df0 2c4caee 99f2df0 2c4caee 99f2df0 2c4caee 8bce1e6 99f2df0 2c4caee 99f2df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import torch
import torchaudio
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, BitsAndBytesConfig
import gradio as gr
import os
import time
# Load model and processor (runs once on startup)
model_name = "ibm-granite/granite-speech-3.2-8b"
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
print("Loading processor...")
speech_granite_processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True)
tokenizer = speech_granite_processor.tokenizer
print("Loading model with 4-bit quantization...")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
speech_granite = AutoModelForSpeechSeq2Seq.from_pretrained(
model_name,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True
)
print("Model loaded successfully")
def transcribe_audio(audio_input):
"""Process audio input and return transcription"""
start_time = time.time()
logs = [f"Audio input received: {type(audio_input)}"]
if audio_input is None:
return "Error: No audio provided.", 0.0
try:
# Handle different audio input formats
if isinstance(audio_input, tuple) and len(audio_input) == 2:
# Microphone input: (sample_rate, numpy_array)
logs.append("Processing microphone input")
sr, wav_np = audio_input
wav = torch.from_numpy(wav_np).float()
# Make sure we have the right dimensions [channels, time]
if len(wav.shape) == 1:
wav = wav.unsqueeze(0)
else:
# File input: filepath string
logs.append(f"Processing file input: {audio_input}")
wav, sr = torchaudio.load(audio_input, normalize=True)
logs.append(f"Loaded audio file with sample rate {sr}Hz and shape {wav.shape}")
# Convert to mono if stereo
if wav.shape[0] > 1:
wav = torch.mean(wav, dim=0, keepdim=True)
logs.append("Converted stereo to mono")
# Resample to 16kHz if needed
if sr != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000)
wav = resampler(wav)
sr = 16000
logs.append(f"Resampled to {sr}Hz")
logs.append(f"Final audio: sample rate {sr}Hz, shape {wav.shape}, min: {wav.min().item()}, max: {wav.max().item()}")
# Verify audio format matches what the model expects
assert wav.shape[0] == 1 and sr == 16000, "Audio must be mono and 16kHz"
# Create text prompt
chat = [
{
"role": "system",
"content": "Knowledge Cutoff Date: April 2024.\nToday's Date: December 19, 2024.\nYou are Granite, developed by IBM. You are a helpful AI assistant",
},
{
"role": "user",
"content": "<|audio|>can you transcribe the speech into a written format?",
}
]
text = tokenizer.apply_chat_template(
chat, tokenize=False, add_generation_prompt=True
)
# CRITICAL CHANGE: Pass text and waveform directly to processor (don't pass audio as named param)
logs.append("Preparing model inputs")
model_inputs = speech_granite_processor(
text,
wav,
device=device, # Explicitly set device
return_tensors="pt",
).to(device)
# Generate transcription
logs.append("Generating transcription")
model_outputs = speech_granite.generate(
**model_inputs,
max_new_tokens=1000,
num_beams=4,
do_sample=False,
min_length=1,
top_p=1.0,
repetition_penalty=3.0,
length_penalty=1.0,
temperature=1.0,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
# Extract the generated text (skipping input tokens)
logs.append("Processing output")
num_input_tokens = model_inputs["input_ids"].shape[-1]
new_tokens = torch.unsqueeze(model_outputs[0, num_input_tokens:], dim=0)
output_text = tokenizer.batch_decode(
new_tokens, add_special_tokens=False, skip_special_tokens=True
)
transcription = output_text[0].strip().upper()
logs.append(f"Transcription complete: {transcription[:50]}...")
except Exception as e:
import traceback
error_trace = traceback.format_exc()
print(error_trace)
print("\n".join(logs))
return f"Error: {str(e)}\n\nLogs:\n" + "\n".join(logs), 0.0
processing_time = round(time.time() - start_time, 2)
return transcription, processing_time
# Create Gradio interface
title = "IBM Granite Speech-to-Text (8B Quantized)"
description = """
Transcribe speech using IBM's Granite Speech 3.2 8B model (loaded in 4-bit).
Upload an audio file or use your microphone to record speech.
"""
iface = gr.Interface(
fn=transcribe_audio,
inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"),
outputs=[
gr.Textbox(label="Transcription", lines=5),
gr.Number(label="Processing Time (seconds)")
],
title=title,
description=description,
)
if __name__ == "__main__":
iface.launch() |