Spaces:
Sleeping
Sleeping
Create ResNet_for_CC.py
Browse files- ResNet_for_CC.py +55 -0
ResNet_for_CC.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.models as models
|
4 |
+
|
5 |
+
|
6 |
+
class ResClassifier(nn.Module):
|
7 |
+
def __init__(self, class_num=14):
|
8 |
+
super(ResClassifier, self).__init__()
|
9 |
+
self.fc1 = nn.Sequential(
|
10 |
+
nn.Linear(128, 64),
|
11 |
+
nn.BatchNorm1d(64, affine=True),
|
12 |
+
nn.ReLU(inplace=True),
|
13 |
+
nn.Dropout()
|
14 |
+
)
|
15 |
+
self.fc2 = nn.Sequential(
|
16 |
+
nn.Linear(64, 64),
|
17 |
+
nn.BatchNorm1d(64, affine=True),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
nn.Dropout()
|
20 |
+
)
|
21 |
+
self.fc3 = nn.Linear(64, class_num)
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
fc1_emb = self.fc1(x)
|
25 |
+
fc2_emb = self.fc2(fc1_emb)
|
26 |
+
logit = self.fc3(fc2_emb)
|
27 |
+
return logit
|
28 |
+
|
29 |
+
class CC_model(nn.Module):
|
30 |
+
def __init__(self, num_classes1=14, num_classes2=None):
|
31 |
+
|
32 |
+
if num_classes2 is None:
|
33 |
+
num_classes2 = num_classes1
|
34 |
+
|
35 |
+
super(CC_model, self).__init__()
|
36 |
+
assert num_classes1 == num_classes2
|
37 |
+
self.num_classes = num_classes1
|
38 |
+
self.model_resnet = models.resnet50(weights='ResNet50_Weights.DEFAULT')
|
39 |
+
num_ftrs = self.model_resnet.fc.in_features
|
40 |
+
self.model_resnet.fc = nn.Identity()
|
41 |
+
self.classification_fc = nn.Linear(num_ftrs, num_classes1)
|
42 |
+
self.dr = nn.Linear(num_ftrs, 128)
|
43 |
+
self.fc1 = ResClassifier(num_classes1)
|
44 |
+
self.fc2 = ResClassifier(num_classes1)
|
45 |
+
|
46 |
+
def forward(self, x, detach_feature=False):
|
47 |
+
feature = self.model_resnet(x)
|
48 |
+
res_out = self.classification_fc(feature)
|
49 |
+
if detach_feature:
|
50 |
+
feature = feature.detach()
|
51 |
+
dr_feature = self.dr(feature)
|
52 |
+
out1 = self.fc1(dr_feature)
|
53 |
+
out2 = self.fc2(dr_feature)
|
54 |
+
output_mean = (out1 + out2)
|
55 |
+
return output_mean
|