Spaces:
Sleeping
Sleeping
Add app.py and examples
Browse files- app.py +61 -0
- examples/example1.jpg +0 -0
- examples/example2.jpg +0 -0
- examples/example3.jpg +0 -0
- examples/example4.jpg +0 -0
- examples/example5.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from pathlib import Path
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from ResNet_for_CC import CC_model
|
9 |
+
|
10 |
+
# Define the Clothing1M class labels
|
11 |
+
CLOTHING1M_CLASSES = [
|
12 |
+
"T-Shirt", "Shirt", "Knitwear", "Chiffon", "Sweater",
|
13 |
+
"Hoodie", "Windbreaker", "Jacket", "Downcoat",
|
14 |
+
"Suit", "Shawl", "Dress", "Vest", "Underwear"
|
15 |
+
]
|
16 |
+
|
17 |
+
# Initialize the model
|
18 |
+
model = CC_model()
|
19 |
+
model_path = hf_hub_download(repo_id="mohamdlog/CC", filename="CC_net.pt")
|
20 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
# Define preprocessing pipeline
|
24 |
+
def preprocess_image(image):
|
25 |
+
if isinstance(image, np.ndarray):
|
26 |
+
image = Image.fromarray(image)
|
27 |
+
transform = transforms.Compose([
|
28 |
+
transforms.Resize((224, 224)),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
])
|
31 |
+
return transform(image).unsqueeze(0)
|
32 |
+
|
33 |
+
# Define classification function
|
34 |
+
def classify_image(image):
|
35 |
+
input_tensor = preprocess_image(image)
|
36 |
+
with torch.no_grad():
|
37 |
+
output = model(input_tensor)
|
38 |
+
|
39 |
+
# Get predicted class and confidence
|
40 |
+
probabilities = torch.nn.functional.softmax(output, dim=1)
|
41 |
+
predicted_class_idx = output.argmax(dim=1).item()
|
42 |
+
predicted_class = CLOTHING1M_CLASSES[predicted_class_idx]
|
43 |
+
confidence = probabilities[0][predicted_class_idx].item()
|
44 |
+
|
45 |
+
return f"Category: {predicted_class}\nConfidence: {confidence:.2f}"
|
46 |
+
|
47 |
+
# Create Gradio interface
|
48 |
+
interface = gr.Interface(
|
49 |
+
fn=classify_image,
|
50 |
+
inputs=gr.Image(label="Uploaded Image"),
|
51 |
+
outputs=gr.Text(label="Predicted Clothing"),
|
52 |
+
title="Clothing Category Classifier",
|
53 |
+
description="Upload an image of clothing, and the model will predict its category.",
|
54 |
+
examples = [[str(file)] for file in Path("examples").glob("*")],
|
55 |
+
flagging_mode="never",
|
56 |
+
theme="soft"
|
57 |
+
)
|
58 |
+
|
59 |
+
# Launch the interface
|
60 |
+
if __name__ == "__main__":
|
61 |
+
interface.launch()
|
examples/example1.jpg
ADDED
![]() |
examples/example2.jpg
ADDED
![]() |
examples/example3.jpg
ADDED
![]() |
examples/example4.jpg
ADDED
![]() |
examples/example5.jpg
ADDED
![]() |