import gradio as gr import time from transformers import pipeline def tts_inference(text, model_name): model = {"reference": model_name} pipe = pipeline("text-to-speech", model=model['reference']) print('Processing...') t = time.time() output = pipe(text) t = time.time() - t print(f"Took {round(t)} seconds") return (output["audio"], output["sampling_rate"]) # List of available TTS models available_models = [ "microsoft/speecht5_tts", "facebook/mms-tts-eng", "suno/bark" ] gr.Interface( fn=tts_inference, inputs=[ gr.Textbox(label="Enter text", placeholder="Type something to convert to speech..."), gr.Dropdown(available_models, label="Select Model") ], outputs=gr.Audio(type="numpy", label="Generated Speech"), title="Hugging Face TTS Space", description="Enter text and generate speech using Hugging Face's text-to-speech models." ).launch()