Spaces:
Runtime error
Runtime error
File size: 10,743 Bytes
6c09f76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import asyncio
import base64
import json
import os
from typing import Literal
import gradio as gr
import numpy as np
from fastrtc import AsyncStreamHandler, WebRTC, wait_for_item
from google import genai
from google.cloud import texttospeech
from google.genai.types import FunctionDeclaration, LiveConnectConfig, Tool
import helpers.datastore as datastore
from helpers.prompts import load_prompt
from tools import FUNCTION_MAP, TOOLS
with open("questions.json", "r") as f:
questions_dict = json.load(f)
datastore.DATA_STORE["questions"] = questions_dict
SYSTEM_PROMPT = load_prompt(
"src/prompts/default_prompt.jinja2", questions=questions_dict
)
class TTSConfig:
def __init__(self):
self.client = texttospeech.TextToSpeechClient()
self.voice = texttospeech.VoiceSelectionParams(
name="en-US-Chirp3-HD-Charon", language_code="en-US"
)
self.audio_config = texttospeech.AudioConfig(
audio_encoding=texttospeech.AudioEncoding.LINEAR16
)
class AsyncGeminiHandler(AsyncStreamHandler):
"""Simple Async Gemini Handler"""
def __init__(
self,
expected_layout: Literal["mono"] = "mono",
output_sample_rate: int = 24000,
output_frame_size: int = 480,
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=16000,
)
self.input_queue: asyncio.Queue = asyncio.Queue()
self.output_queue: asyncio.Queue = asyncio.Queue()
self.text_queue: asyncio.Queue = asyncio.Queue()
self.quit: asyncio.Event = asyncio.Event()
self.chunk_size = 1024
self.tts_config: TTSConfig | None = TTSConfig()
self.text_buffer = ""
def copy(self) -> "AsyncGeminiHandler":
return AsyncGeminiHandler(
expected_layout="mono",
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
def _encode_audio(self, data: np.ndarray) -> str:
"""Encode Audio data to send to the server"""
return base64.b64encode(data.tobytes()).decode("UTF-8")
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
"""Receives and processes audio frames asynchronously."""
_, array = frame
array = array.squeeze()
audio_message = self._encode_audio(array)
self.input_queue.put_nowait(audio_message)
async def emit(self) -> tuple[int, np.ndarray] | None:
"""Asynchronously emits items from the output queue."""
return await wait_for_item(self.output_queue)
async def start_up(self) -> None:
"""Initialize and start the voice agent application.
This asynchronous method sets up the Gemini API client, configures the live connection,
and starts three concurrent tasks for receiving, processing and sending information.
Returns:
None
Raises:
ValueError: If GEMINI_API_KEY is not provided when required.
"""
if not os.getenv("GOOGLE_GENAI_USE_VERTEXAI") == "True":
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise ValueError("API Key is required")
client = genai.Client(
api_key=api_key,
http_options={"api_version": "v1alpha"},
)
else:
client = genai.Client(http_options={"api_version": "v1beta1"})
config = LiveConnectConfig(
system_instruction={
"parts": [{"text": SYSTEM_PROMPT}],
"role": "user",
},
tools=[
Tool(
function_declarations=[
FunctionDeclaration(**tool) for tool in TOOLS
]
)
],
response_modalities=["AUDIO"],
)
async with (
client.aio.live.connect(
model="gemini-2.0-flash-exp", config=config
) as session, # setup the live connection session (websocket)
asyncio.TaskGroup() as tg, # create a task group to run multiple tasks concurrently
):
self.session = session
# these tasks will run concurrently and continuously
[
tg.create_task(self.process()),
tg.create_task(self.send_realtime()),
tg.create_task(self.tts()),
]
async def process(self) -> None:
"""Process responses from the session in a continuous loop.
This asynchronous method handles different types of responses from the session:
- Audio data: Processes and queues audio data with the specified sample rate
- Text data: Accumulates received text in a buffer
- Tool calls: Executes registered functions and sends their responses back
- Server content: Handles turn completion and stores conversation history
The method runs indefinitely until interrupted, handling any exceptions that occur
during processing by logging them and continuing after a brief delay.
Returns:
None
Raises:
Exception: Any exceptions during processing are caught and logged
"""
while True:
try:
turn = self.session.receive()
async for response in turn:
if data := response.data:
# audio data
array = np.frombuffer(data, dtype=np.int16)
self.output_queue.put_nowait((self.output_sample_rate, array))
continue
if text := response.text:
# text data
print(f"Received text: {text}")
self.text_buffer += text
if response.tool_call is not None:
# function calling
for tool in response.tool_call.function_calls:
try:
tool_response = FUNCTION_MAP[tool.name](**tool.args)
print(f"Calling tool: {tool.name}")
print(f"Tool response: {tool_response}")
await self.session.send(
input=tool_response, end_of_turn=True
)
await asyncio.sleep(0.1)
except Exception as e:
print(f"Error in tool call: {e}")
await asyncio.sleep(0.1)
if sc := response.server_content:
# check if bot's turn is complete
if sc.turn_complete and self.text_buffer:
self.text_queue.put_nowait(self.text_buffer)
FUNCTION_MAP["store_input"](
role="bot", input=self.text_buffer
)
self.text_buffer = ""
except Exception as e:
print(f"Error in processing: {e}")
await asyncio.sleep(0.1)
async def send_realtime(self) -> None:
"""Send real-time audio data to model.
This method continuously reads audio data from an input queue and sends it to a model
session in real-time. It runs in an infinite loop until interrupted.
The audio data is sent with mime type 'audio/pcm'. If an error occurs during sending,
it will be printed and the method will sleep briefly before retrying.
Returns:
None
Raises:
Exception: Any exceptions during queue access or session sending will be caught and logged.
"""
while True:
try:
data = await self.input_queue.get()
msg = {"data": data, "mime_type": "audio/pcm"}
await self.session.send(input=msg)
except Exception as e:
print(f"Error in real-time sending: {e}")
await asyncio.sleep(0.1)
async def tts(self) -> None:
while True:
try:
text = await self.text_queue.get()
# Get response in a single request
if text:
response = self.tts_config.client.synthesize_speech(
input=texttospeech.SynthesisInput(text=text),
voice=self.tts_config.voice,
audio_config=self.tts_config.audio_config,
)
array = np.frombuffer(response.audio_content, dtype=np.int16)
self.output_queue.put_nowait((self.output_sample_rate, array))
except Exception as e:
print(f"Error in TTS: {e}")
await asyncio.sleep(0.1)
def shutdown(self) -> None:
self.quit.set()
# Main Gradio Interface
def registry(*args, **kwargs):
"""Sets up and returns the Gradio interface."""
interface = gr.Blocks()
with interface:
with gr.Tabs():
with gr.TabItem("Voice Chat"):
gr.HTML(
"""
<div style='text-align: left'>
<h1>ML6 Voice Demo</h1>
</div>
"""
)
gemini_handler = AsyncGeminiHandler()
with gr.Row():
audio = WebRTC(
label="Voice Chat",
modality="audio",
mode="send-receive",
)
# Add display components for questions and answers
with gr.Row():
with gr.Column():
gr.JSON(
label="Questions",
value=datastore.DATA_STORE["questions"],
)
with gr.Column():
gr.JSON(
label="Answers",
value=lambda: datastore.DATA_STORE["answers"],
every=1,
)
audio.stream(
gemini_handler,
inputs=[audio],
outputs=[audio],
time_limit=600,
concurrency_limit=10,
)
return interface
# Launch the Gradio interface
gr.load(
name="demo",
src=registry,
).launch()
|