import random from collections import Counter, defaultdict from langcodes import Language, standardize_tag from rich import print from .util import _get_dataset_config_names, _load_dataset def print_counts(slug, subjects_dev, subjects_test): print( f"{slug:<25} {len(list(set(subjects_test))):>3} test categories, {len(subjects_test):>6} samples, {len(list(set(subjects_dev))):>3} dev categories, {len(subjects_dev):>6} dev samples" ) def print_datasets_analysis(): print("Category counts and sample counts per dataset:") slug1 = "masakhane/afrimmlu" ds1 = _load_dataset(slug1, "eng") print_counts(slug1, ds1["dev"]["subject"], ds1["test"]["subject"]) langs1 = _get_dataset_config_names(slug1) langs1 = [standardize_tag(a, macro=True) for a in langs1] slug2 = "openai/MMMLU" # does not have dev set! – but: these languages are all also present in Global-MMLU ds2 = _load_dataset(slug2, "FR_FR") print_counts(slug2, [], ds2["test"]["Subject"]) langs2 = _get_dataset_config_names(slug2) langs2 = [a.split("_")[0].lower() for a in langs2] langs2.remove("default") slug3 = "CohereForAI/Global-MMLU" ds3 = _load_dataset(slug3, "en") print_counts(slug3, ds3["dev"]["subject"], ds3["test"]["subject"]) langs3 = _get_dataset_config_names(slug3) langs3 = [standardize_tag(a, macro=True) for a in langs3] slug4 = "lighteval/okapi_mmlu" ds4 = _load_dataset(slug4, "ar", trust_remote_code=True) print_counts( slug4, [a.split("/")[0] for a in ds4["dev"]["id"]], [a.split("/")[0] for a in ds4["test"]["id"]], ) langs4 = _get_dataset_config_names(slug4) slug5 = "Eurolingua/mmlux" subsets = _get_dataset_config_names(slug5) subjects = set(a.rsplit("_", 1)[0] for a in subsets) rows_test = [ _load_dataset(slug5, subset)["test"]["id"] for subset in subsets if "_DA" in subset ] rows_test = [a.split("/")[0] for l in rows_test for a in l] rows_dev = [ _load_dataset(slug5, subset)["dev"]["id"] for subset in subsets if "_DA" in subset ] rows_dev = [a.split("/")[0] for l in rows_dev for a in l] print_counts(slug5, rows_dev, rows_test) langs5 = list(set(a.rsplit("_", 1)[1].split("-")[0].lower() for a in subsets)) langs = langs1 + langs2 + langs3 + langs4 + langs5 lang_datasets = defaultdict(list) for slug, langs_list in [ (slug1, langs1), (slug2, langs2), (slug3, langs3), (slug4, langs4), (slug5, langs5), ]: for lang in langs_list: lname = Language.get(lang).display_name() lang_datasets[lname].append(slug) print("Datasets per language:") print(sorted(lang_datasets.items())) print(len(set(langs))) print("Datasets per language for languages that are not in Global-MMLU:") print( sorted( (lang, datasets) for lang, datasets in lang_datasets.items() if slug3 not in datasets ) ) print( Counter( dataset for ds_list in lang_datasets.values() for dataset in ds_list if slug3 not in ds_list ) ) print(list(set(ds1["test"]["subject"]))) # based on this analysis: # - we drop the OpenAI dataset, since it does not have a dev set, and since every language that it has is also present in Global-MMLU # - we stick to the 5 categories of the AfriMMLU dataset, since this is the most restricted dataset, and these 5 categories are present in all datasets, so this is good for comparability # AfriMMLU is human-translated, but has only 5 task categories # Global-MMLU is mixed-translated, specifically those 15 languages are that are also present in Global-MMLU-Lite, which are mostly from MMMLU; otherwise translated using Google Translate # Okapi-MMLU is translated using ChatGPT (version unclear) # MMLUX is translated using DeepL # Therefore, the priority is: AfriMMLU, Global-MMLU, MMLUX, Okapi-MMLU # print_datasets_analysis() def parse_choices(row): if not isinstance(row["choices"], list): row["choices"] = eval(row["choices"]) return row def add_choices(row): row["choices"] = [ row["option_a"], row["option_b"], row["option_c"], row["option_d"], ] return row def load_mmlu(language_bcp_47, nr): categories = sorted( list(set(_load_dataset("masakhane/afrimmlu", "eng")["dev"]["subject"])) ) category = categories[nr % len(categories)] random.seed(nr) i = random.randint(0, 100) tags_afrimmlu = { standardize_tag(a, macro=True): a for a in _get_dataset_config_names("masakhane/afrimmlu") } tags_global_mmlu = { standardize_tag(a, macro=True): a for a in _get_dataset_config_names("CohereForAI/Global-MMLU") } tags_okapi = _get_dataset_config_names("lighteval/okapi_mmlu") tags_mmlux = set( a.rsplit("_", 1)[1].split("-")[0].lower() for a in _get_dataset_config_names("Eurolingua/mmlux") ) if language_bcp_47 in tags_afrimmlu: ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47]) ds = ds.map(parse_choices) examples = ds["dev"].filter(lambda x: x["subject"] == category) task = ds["test"].filter(lambda x: x["subject"] == category)[i] return "masakhane/afrimmlu", examples, task elif language_bcp_47 in tags_global_mmlu: ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47]) ds = ds.map(add_choices) examples = ds["dev"].filter(lambda x: x["subject"] == category) task = ds["test"].filter(lambda x: x["subject"] == category)[i] return "CohereForAI/Global-MMLU", examples, task elif language_bcp_47 in tags_okapi: return None, None, None # FIXME ds = _load_dataset( "lighteval/okapi_mmlu", language_bcp_47, trust_remote_code=True ) examples = ds["dev"].filter(lambda x: x["subject"] == category) task = ds["test"].filter(lambda x: x["id"] == f"{category}/test/{i}")[0] return "lighteval/okapi_mmlu", examples, task elif language_bcp_47 in tags_mmlux: # loading this is more complicated, todo return None, None, None else: return None, None, None