David Pomerenke
Run on 40 languages, additional models
260c1a3
import json
import re
from collections import defaultdict
from datetime import date
from os import getenv
import pandas as pd
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from elevenlabs import AsyncElevenLabs
from huggingface_hub import AsyncInferenceClient, HfApi
from joblib.memory import Memory
from openai import AsyncOpenAI
from requests import HTTPError, get
# for development purposes, all languages will be evaluated on the fast models
# and only a sample of languages will be evaluated on all models
models = [
"meta-llama/llama-4-maverick", # 0.6$
"meta-llama/llama-3.3-70b-instruct", # 0.3$
"meta-llama/llama-3.1-70b-instruct", # 0.3$
"meta-llama/llama-3-70b-instruct", # 0.4$
# "meta-llama/llama-2-70b-chat", # 0.9$; not properly supported by OpenRouter
"openai/gpt-4.1-mini", # 1.6$
"openai/gpt-4.1-nano", # 0.4$
"openai/gpt-4o-mini", # 0.6$
"openai/gpt-3.5-turbo-0613", # 2$
"openai/gpt-3.5-turbo", # 1.5$
# "anthropic/claude-3.5-haiku", # 4$ -> too expensive for dev
"mistralai/mistral-small-3.1-24b-instruct", # 0.3$
"mistralai/mistral-saba", # 0.6$
"mistralai/mistral-nemo", # 0.08$
"google/gemini-2.5-flash-preview", # 0.6$
"google/gemini-2.0-flash-lite-001", # 0.3$
"google/gemma-3-27b-it", # 0.2$
# "qwen/qwen-turbo", # 0.2$; recognizes "inappropriate content"
# "qwen/qwq-32b", # 0.2$
# "qwen/qwen-2.5-72b-instruct", # 0.39$
# "qwen/qwen-2-72b-instruct", # 0.9$
"deepseek/deepseek-chat-v3-0324", # 1.1$
"deepseek/deepseek-chat", # 0.89$
"microsoft/phi-4", # 0.07$
"microsoft/phi-4-multimodal-instruct", # 0.1$
"amazon/nova-micro-v1", # 0.09$
]
transcription_models = [
"elevenlabs/scribe_v1",
"openai/whisper-large-v3",
# "openai/whisper-small",
# "facebook/seamless-m4t-v2-large",
]
cache = Memory(location=".cache", verbose=0).cache
@cache
def get_popular_models(date: date):
raw = get("https://openrouter.ai/rankings").text
data = re.search(r'{\\"data\\":(.*),\\"isPercentage\\"', raw).group(1)
data = json.loads(data.replace("\\", ""))
counts = defaultdict(int)
for day in data:
for model, count in day["ys"].items():
if model.startswith("openrouter") or model == "Others":
continue
counts[model.split(":")[0]] += count
counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
return [model for model, _ in counts]
pop_models = get_popular_models(date.today())
# models += [m for m in pop_models if m not in models][:1]
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)
@cache
async def complete(**kwargs):
async with openrouter_rate_limit:
response = await client.chat.completions.create(**kwargs)
if not response.choices:
raise Exception(response)
return response
@cache
async def transcribe_elevenlabs(path, model):
modelname = model.split("/")[-1]
client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY"))
async with elevenlabs_rate_limit:
with open(path, "rb") as file:
response = await client.speech_to_text.convert(
model_id=modelname, file=file
)
return response.text
@cache
async def transcribe_huggingface(path, model):
client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN"))
async with huggingface_rate_limit:
output = await client.automatic_speech_recognition(model=model, audio=path)
return output.text
async def transcribe(path, model="elevenlabs/scribe_v1"):
provider, modelname = model.split("/")
match provider:
case "elevenlabs":
return await transcribe_elevenlabs(path, modelname)
case "openai" | "facebook":
return await transcribe_huggingface(path, model)
case _:
raise ValueError(f"Model {model} not supported")
models = pd.DataFrame(models, columns=["id"])
@cache
def get_models(date):
return get("https://openrouter.ai/api/frontend/models/").json()["data"]
def get_or_metadata(id):
# get metadata from OpenRouter
models = get_models(date.today())
metadata = next((m for m in models if m["slug"] == id), None)
return metadata
api = HfApi()
@cache
def get_hf_metadata(row):
# get metadata from the HuggingFace API
empty = {
"hf_id": None,
"creation_date": None,
"size": None,
"type": "Commercial",
"license": None,
}
if not row:
return empty
id = row["hf_slug"] or row["slug"].split(":")[0]
if not id:
return empty
try:
info = api.model_info(id)
license = (info.card_data.license or "").replace("-", " ").replace("mit", "MIT").title()
return {
"hf_id": info.id,
"creation_date": info.created_at,
"size": info.safetensors.total if info.safetensors else None,
"type": "Open",
"license": license,
}
except HTTPError:
return empty
def get_cost(row):
cost = float(row["endpoint"]["pricing"]["completion"])
return round(cost * 1_000_000, 2)
or_metadata = models["id"].apply(get_or_metadata)
hf_metadata = or_metadata.apply(get_hf_metadata)
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date
creation_date_or = pd.to_datetime(
or_metadata.str["created_at"].str.split("T").str[0]
).dt.date
models = models.assign(
name=or_metadata.str["short_name"],
provider_name=or_metadata.str["name"].str.split(": ").str[0],
cost=or_metadata.apply(get_cost),
hf_id=hf_metadata.str["hf_id"],
size=hf_metadata.str["size"],
type=hf_metadata.str["type"],
license=hf_metadata.str["license"],
creation_date=creation_date_hf.combine_first(creation_date_or),
)