annikwag commited on
Commit
aebc985
·
verified ·
1 Parent(s): e25a980

Create rag_utils.py

Browse files
Files changed (1) hide show
  1. appStore/rag_utils.py +126 -0
appStore/rag_utils.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import requests
3
+ import streamlit as st
4
+
5
+ def truncate_to_tokens(text, max_tokens):
6
+ """
7
+ Truncate a text to an approximate token count by splitting on whitespace.
8
+
9
+ Args:
10
+ text (str): The text to truncate.
11
+ max_tokens (int): Maximum number of tokens/words to keep.
12
+
13
+ Returns:
14
+ str: The truncated text.
15
+ """
16
+ tokens = text.split()
17
+ if len(tokens) > max_tokens:
18
+ return " ".join(tokens[:max_tokens])
19
+ return text
20
+
21
+ def build_context_for_result(res, compute_title_fn):
22
+ """
23
+ Build a context string (title + objective + description) from a search result.
24
+
25
+ Args:
26
+ res (dict): A result dictionary with 'payload' key containing metadata.
27
+ compute_title_fn (callable): Function to compute the title from metadata.
28
+
29
+ Returns:
30
+ str: Combined text from title, objective, and description.
31
+ """
32
+ metadata = res.payload.get('metadata', {})
33
+ title = metadata.get("title", compute_title_fn(metadata))
34
+ objective = metadata.get("objective", "")
35
+ desc_en = metadata.get("description.en", "").strip()
36
+ desc_de = metadata.get("description.de", "").strip()
37
+ description = desc_en if desc_en else desc_de
38
+ return f"{title}\n{objective}\n{description}"
39
+
40
+ def highlight_query(text, query):
41
+ """
42
+ Highlight the query text in the given string with red/bold HTML styling.
43
+
44
+ Args:
45
+ text (str): The full text in which to highlight matches.
46
+ query (str): The substring (query) to highlight.
47
+
48
+ Returns:
49
+ str: The HTML-formatted string with highlighted matches.
50
+ """
51
+ pattern = re.compile(re.escape(query), re.IGNORECASE)
52
+ return pattern.sub(lambda m: f"<span style='color:red; font-weight:bold;'>{m.group(0)}</span>", text)
53
+
54
+ def format_project_id(pid):
55
+ """
56
+ Format a numeric project ID into the typical GIZ format (e.g. '201940485' -> '2019.4048.5').
57
+
58
+ Args:
59
+ pid (str|int): The project ID to format.
60
+
61
+ Returns:
62
+ str: Formatted project ID if it has enough digits, otherwise the original string.
63
+ """
64
+ s = str(pid)
65
+ if len(s) > 5:
66
+ return s[:4] + "." + s[4:-1] + "." + s[-1]
67
+ return s
68
+
69
+ def compute_title(metadata):
70
+ """
71
+ Compute a default title from metadata using name.en (or name.de if empty).
72
+ If an ID is present, append it in brackets.
73
+
74
+ Args:
75
+ metadata (dict): Project metadata dictionary.
76
+
77
+ Returns:
78
+ str: Computed title string or 'No Title'.
79
+ """
80
+ name_en = metadata.get("name.en", "").strip()
81
+ name_de = metadata.get("name.de", "").strip()
82
+ base = name_en if name_en else name_de
83
+ pid = metadata.get("id", "")
84
+ if base and pid:
85
+ return f"{base} [{format_project_id(pid)}]"
86
+ return base or "No Title"
87
+
88
+ def get_rag_answer(query, top_results, endpoint, token):
89
+ """
90
+ Send a prompt to the LLM endpoint, including the context from top results.
91
+
92
+ Args:
93
+ query (str): The user question.
94
+ top_results (list): List of top search results from which to build context.
95
+ endpoint (str): The HuggingFace Inference endpoint URL.
96
+ token (str): The Bearer token (from st.secrets, for instance).
97
+
98
+ Returns:
99
+ str: The LLM-generated answer, or an error message if the call fails.
100
+ """
101
+ # Build the context
102
+ from appStore.rag_utils import truncate_to_tokens, build_context_for_result, compute_title
103
+ context = "\n\n".join([build_context_for_result(res, compute_title) for res in top_results])
104
+ context = truncate_to_tokens(context, 11500) # Truncate to ~11.5k tokens
105
+
106
+ # Construct the prompt
107
+ prompt = (
108
+ "You are a project portfolio adviser at the development cooperation GIZ. "
109
+ "Using the following context, answer the question in English precisely. "
110
+ "Ensure that any project title mentioned in your answer is wrapped in ** (markdown bold). "
111
+ "Only output the final answer below, without repeating the context or question.\n\n"
112
+ f"Context:\n{context}\n\n"
113
+ f"Question: {query}\n\n"
114
+ "Answer:"
115
+ )
116
+ headers = {"Authorization": f"Bearer {token}"}
117
+ payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}}
118
+ response = requests.post(endpoint, headers=headers, json=payload)
119
+ if response.status_code == 200:
120
+ result = response.json()
121
+ answer = result[0].get("generated_text", "")
122
+ if "Answer:" in answer:
123
+ answer = answer.split("Answer:")[-1].strip()
124
+ return answer
125
+ else:
126
+ return f"Error in generating answer: {response.text}"