Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,19 +36,15 @@ from appStore.filter_utils import (
|
|
36 |
|
37 |
from appStore.crs_utils import lookup_crs_value
|
38 |
|
39 |
-
|
40 |
###########################################
|
41 |
# Model Config
|
42 |
###########################################
|
43 |
|
44 |
-
# Initialize the parser and read the configuration file
|
45 |
config = configparser.ConfigParser()
|
46 |
config.read('model_params.cfg')
|
47 |
|
48 |
-
# Retrieve model parameters
|
49 |
DEDICATED_MODEL = config.get('MODEL', 'DEDICATED_MODEL')
|
50 |
DEDICATED_ENDPOINT = config.get('MODEL', 'DEDICATED_ENDPOINT')
|
51 |
-
# Write access token from the settings
|
52 |
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
|
53 |
|
54 |
st.set_page_config(page_title="SEARCH IATI", layout='wide')
|
@@ -108,7 +104,7 @@ collection_name = "giz_worldwide"
|
|
108 |
client = get_client()
|
109 |
print(client.get_collections())
|
110 |
|
111 |
-
#
|
112 |
# chunks = process_giz_worldwide()
|
113 |
# temp_doc = create_documents(chunks, 'chunks')
|
114 |
# hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
|
@@ -128,7 +124,7 @@ country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mappi
|
|
128 |
unique_country_names = sorted(country_name_mapping.keys())
|
129 |
|
130 |
###########################################
|
131 |
-
# Filter Controls
|
132 |
###########################################
|
133 |
col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1])
|
134 |
|
@@ -170,6 +166,26 @@ with col5:
|
|
170 |
|
171 |
show_exact_matches = st.checkbox("Show only exact matches", value=False)
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
###########################################
|
174 |
# Main Search / Results
|
175 |
###########################################
|
@@ -213,6 +229,11 @@ else:
|
|
213 |
get_country_name
|
214 |
)
|
215 |
|
|
|
|
|
|
|
|
|
|
|
216 |
# Remove duplicates
|
217 |
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
|
218 |
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
|
@@ -229,44 +250,26 @@ else:
|
|
229 |
# 3) Display results
|
230 |
if show_exact_matches:
|
231 |
# Lexical substring match only
|
232 |
-
st.write("Showing **Top
|
233 |
query_substring = var.strip().lower()
|
234 |
lexical_substring_filtered = [
|
235 |
-
r for r in
|
236 |
if query_substring in r.payload["page_content"].lower()
|
237 |
]
|
238 |
-
|
239 |
-
lexical_substring_filtered,
|
240 |
-
country_filter,
|
241 |
-
region_filter,
|
242 |
-
end_year_range,
|
243 |
-
crs_filter,
|
244 |
-
min_budget,
|
245 |
-
region_df,
|
246 |
-
iso_code_to_sub_region,
|
247 |
-
clean_country_code,
|
248 |
-
get_country_name
|
249 |
-
)
|
250 |
-
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
|
251 |
if not filtered_lexical_no_dupe:
|
252 |
st.write('No exact matches, consider unchecking "Show only exact matches"')
|
253 |
else:
|
254 |
-
|
255 |
-
#
|
256 |
-
rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN)
|
257 |
-
st.markdown(f"<div style='text-align:center; font-size:2.1em; font-style: italic; font-weight: bold;'>{var}</div>", unsafe_allow_html=True)
|
258 |
-
st.write(rag_answer)
|
259 |
-
st.divider()
|
260 |
-
|
261 |
-
# Show each result
|
262 |
for res in top_results:
|
263 |
metadata = res.payload.get('metadata', {})
|
264 |
if "title" not in metadata:
|
265 |
metadata["title"] = compute_title(metadata)
|
266 |
-
|
267 |
-
# Title
|
268 |
title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
|
269 |
-
|
|
|
270 |
|
271 |
# Description snippet
|
272 |
objective = metadata.get("objective", "None")
|
@@ -301,7 +304,6 @@ else:
|
|
301 |
new_crs_value_clean = re.sub(r'\.0$', '', str(new_crs_value))
|
302 |
crs_combined = f"{crs_key_clean}: {new_crs_value_clean}" if crs_key_clean else "Unknown"
|
303 |
|
304 |
-
# Additional text
|
305 |
additional_text = (
|
306 |
f"**Objective:** {highlight_query(objective, var)}<br>"
|
307 |
f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}<br>"
|
@@ -323,19 +325,34 @@ else:
|
|
323 |
if not filtered_semantic_no_dupe:
|
324 |
st.write("No relevant results found.")
|
325 |
else:
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN)
|
328 |
-
st.markdown(
|
329 |
-
|
|
|
|
|
330 |
st.divider()
|
331 |
-
st.write("Showing **Top 15 Semantic Search results**")
|
332 |
|
333 |
for res in top_results:
|
334 |
metadata = res.payload.get('metadata', {})
|
335 |
if "title" not in metadata:
|
336 |
metadata["title"] = compute_title(metadata)
|
337 |
-
|
338 |
-
|
|
|
339 |
|
340 |
desc_en = metadata.get("description.en", "").strip()
|
341 |
desc_de = metadata.get("description.de", "").strip()
|
|
|
36 |
|
37 |
from appStore.crs_utils import lookup_crs_value
|
38 |
|
|
|
39 |
###########################################
|
40 |
# Model Config
|
41 |
###########################################
|
42 |
|
|
|
43 |
config = configparser.ConfigParser()
|
44 |
config.read('model_params.cfg')
|
45 |
|
|
|
46 |
DEDICATED_MODEL = config.get('MODEL', 'DEDICATED_MODEL')
|
47 |
DEDICATED_ENDPOINT = config.get('MODEL', 'DEDICATED_ENDPOINT')
|
|
|
48 |
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
|
49 |
|
50 |
st.set_page_config(page_title="SEARCH IATI", layout='wide')
|
|
|
104 |
client = get_client()
|
105 |
print(client.get_collections())
|
106 |
|
107 |
+
# Uncomment if needed:
|
108 |
# chunks = process_giz_worldwide()
|
109 |
# temp_doc = create_documents(chunks, 'chunks')
|
110 |
# hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
|
|
|
124 |
unique_country_names = sorted(country_name_mapping.keys())
|
125 |
|
126 |
###########################################
|
127 |
+
# Filter Controls - Row 1
|
128 |
###########################################
|
129 |
col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1])
|
130 |
|
|
|
166 |
|
167 |
show_exact_matches = st.checkbox("Show only exact matches", value=False)
|
168 |
|
169 |
+
###########################################
|
170 |
+
# Filter Controls - Row 2 (Additional Filters)
|
171 |
+
###########################################
|
172 |
+
col1_2, col2_2, col3_2, col4_2, col5_2 = st.columns(5)
|
173 |
+
|
174 |
+
with col1_2:
|
175 |
+
# Get unique clients from project_data; adjust column name as needed.
|
176 |
+
client_options = sorted(project_data["client"].dropna().unique().tolist())
|
177 |
+
client_filter = st.selectbox("Client", ["All/Not allocated"] + client_options)
|
178 |
+
# Columns 2-4 reserved (empty)
|
179 |
+
with col2_2:
|
180 |
+
st.empty()
|
181 |
+
with col3_2:
|
182 |
+
st.empty()
|
183 |
+
with col4_2:
|
184 |
+
st.empty()
|
185 |
+
with col5_2:
|
186 |
+
if st.button("Reset Filters"): # MOD: Reset button in filter row 2, col5
|
187 |
+
st.experimental_rerun()
|
188 |
+
|
189 |
###########################################
|
190 |
# Main Search / Results
|
191 |
###########################################
|
|
|
229 |
get_country_name
|
230 |
)
|
231 |
|
232 |
+
# Additional filter by client (MOD: added client filter)
|
233 |
+
if client_filter != "All/Not allocated":
|
234 |
+
filtered_semantic = [r for r in filtered_semantic if r.payload.get("metadata", {}).get("client", "Unknown Client") == client_filter]
|
235 |
+
filtered_lexical = [r for r in filtered_lexical if r.payload.get("metadata", {}).get("client", "Unknown Client") == client_filter]
|
236 |
+
|
237 |
# Remove duplicates
|
238 |
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
|
239 |
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
|
|
|
250 |
# 3) Display results
|
251 |
if show_exact_matches:
|
252 |
# Lexical substring match only
|
253 |
+
st.write("Showing **Top Lexical Search results**") # MOD: Removed RAG answer for lexical search
|
254 |
query_substring = var.strip().lower()
|
255 |
lexical_substring_filtered = [
|
256 |
+
r for r in filtered_lexical
|
257 |
if query_substring in r.payload["page_content"].lower()
|
258 |
]
|
259 |
+
filtered_lexical_no_dupe = remove_duplicates(lexical_substring_filtered)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
if not filtered_lexical_no_dupe:
|
261 |
st.write('No exact matches, consider unchecking "Show only exact matches"')
|
262 |
else:
|
263 |
+
# Use all matching lexical results (or slice as desired)
|
264 |
+
top_results = filtered_lexical_no_dupe # or use [:15] if you want to limit
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
for res in top_results:
|
266 |
metadata = res.payload.get('metadata', {})
|
267 |
if "title" not in metadata:
|
268 |
metadata["title"] = compute_title(metadata)
|
269 |
+
# MOD: Remove hyperlink from title by stripping <a> tags.
|
|
|
270 |
title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
|
271 |
+
title_clean = re.sub(r'<a.*?>|</a>', '', title_html)
|
272 |
+
st.markdown(f"#### {title_clean}", unsafe_allow_html=True)
|
273 |
|
274 |
# Description snippet
|
275 |
objective = metadata.get("objective", "None")
|
|
|
304 |
new_crs_value_clean = re.sub(r'\.0$', '', str(new_crs_value))
|
305 |
crs_combined = f"{crs_key_clean}: {new_crs_value_clean}" if crs_key_clean else "Unknown"
|
306 |
|
|
|
307 |
additional_text = (
|
308 |
f"**Objective:** {highlight_query(objective, var)}<br>"
|
309 |
f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}<br>"
|
|
|
325 |
if not filtered_semantic_no_dupe:
|
326 |
st.write("No relevant results found.")
|
327 |
else:
|
328 |
+
# MOD: Pagination for semantic search results
|
329 |
+
page_size = 15
|
330 |
+
total_results = len(filtered_semantic_no_dupe)
|
331 |
+
total_pages = (total_results - 1) // page_size + 1
|
332 |
+
if total_pages > 1:
|
333 |
+
page = st.selectbox("Page", list(range(1, total_pages + 1)))
|
334 |
+
else:
|
335 |
+
page = 1
|
336 |
+
start_index = (page - 1) * page_size
|
337 |
+
end_index = start_index + page_size
|
338 |
+
top_results = filtered_semantic_no_dupe[start_index:end_index]
|
339 |
+
st.write(f"Showing **{len(top_results)}** Semantic Search results (Page {page} of {total_pages})")
|
340 |
+
|
341 |
+
# MOD: Only display the RAG answer for semantic search and style it distinctively.
|
342 |
rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN)
|
343 |
+
st.markdown(
|
344 |
+
f"<div style='background-color: #f0f0f0; color: #333; padding: 10px; border-radius: 5px; font-size:1.2em; text-align:center;'>{rag_answer}</div>",
|
345 |
+
unsafe_allow_html=True
|
346 |
+
)
|
347 |
st.divider()
|
|
|
348 |
|
349 |
for res in top_results:
|
350 |
metadata = res.payload.get('metadata', {})
|
351 |
if "title" not in metadata:
|
352 |
metadata["title"] = compute_title(metadata)
|
353 |
+
# MOD: Remove hyperlink from project title
|
354 |
+
title_clean = re.sub(r'<a.*?>|</a>', '', metadata["title"])
|
355 |
+
st.markdown(f"#### {title_clean}")
|
356 |
|
357 |
desc_en = metadata.get("description.en", "").strip()
|
358 |
desc_de = metadata.get("description.de", "").strip()
|