Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import pandas as pd | |
import re | |
import json | |
import configparser | |
from datetime import datetime | |
from torch import cuda | |
# Import existing modules from appStore | |
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year | |
from appStore.prep_utils import create_documents, get_client | |
from appStore.embed import hybrid_embed_chunks | |
from appStore.search import hybrid_search | |
from appStore.region_utils import ( | |
load_region_data, | |
clean_country_code, | |
get_country_name, | |
get_regions, | |
get_country_name_and_region_mapping | |
) | |
# TF-IDF part (excluded from the app for now) | |
# from appStore.tfidf_extraction import extract_top_keywords | |
# Import helper modules | |
from appStore.rag_utils import ( | |
highlight_query, | |
get_rag_answer, | |
compute_title | |
) | |
from appStore.filter_utils import ( | |
parse_budget, | |
filter_results, | |
get_crs_options | |
) | |
from appStore.crs_utils import lookup_crs_value | |
########################################### | |
# Model Config | |
########################################### | |
# Initialize the parser and read the configuration file | |
config = configparser.ConfigParser() | |
config.read('model_params.cfg') | |
# Retrieve model parameters | |
DEDICATED_MODEL = config.get('MODEL', 'DEDICATED_MODEL') | |
DEDICATED_ENDPOINT = config.get('MODEL', 'DEDICATED_ENDPOINT') | |
# Write access token from the settings | |
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"] | |
st.set_page_config(page_title="SEARCH IATI", layout='wide') | |
########################################### | |
# Cache the project data | |
########################################### | |
def load_project_data(): | |
""" | |
Load and process the GIZ worldwide data, returning a pandas DataFrame. | |
""" | |
return process_giz_worldwide() | |
project_data = load_project_data() | |
# Determine min and max budgets in million euros | |
budget_series = pd.to_numeric(project_data['total_project'], errors='coerce').dropna() | |
min_budget_val = float(budget_series.min() / 1e6) | |
max_budget_val = float(budget_series.max() / 1e6) | |
########################################### | |
# Prepare region data | |
########################################### | |
region_lookup_path = "docStore/regions_lookup.csv" | |
region_df = load_region_data(region_lookup_path) | |
########################################### | |
# Get device | |
########################################### | |
device = 'cuda' if cuda.is_available() else 'cpu' | |
########################################### | |
# Streamlit App Layout | |
########################################### | |
col_title, col_about = st.columns([8, 2]) | |
with col_title: | |
st.markdown("<h1 style='text-align:center;'>GIZ Project Search (PROTOTYPE)</h1>", unsafe_allow_html=True) | |
with col_about: | |
with st.expander("ℹ️ About"): | |
st.markdown( | |
""" | |
This app is a prototype for testing purposes using publicly available project data | |
from the German International Cooperation Society (GIZ) as of 23rd February 2025. | |
**Please do NOT enter sensitive or personal information.** | |
**Note**: The answers are AI-generated and may be wrong or misleading. | |
""", unsafe_allow_html=True | |
) | |
# Main query input | |
var = st.text_input("Enter Question") | |
########################################### | |
# Create or load the embeddings collection | |
########################################### | |
collection_name = "giz_worldwide" | |
client = get_client() | |
print(client.get_collections()) | |
# If needed, once only: | |
# chunks = process_giz_worldwide() | |
# temp_doc = create_documents(chunks, 'chunks') | |
# hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True) | |
max_end_year = get_max_end_year(client, collection_name) | |
_, unique_sub_regions = get_regions(region_df) | |
# Build country->code and code->region mapping | |
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping( | |
client, | |
collection_name, | |
region_df, | |
hybrid_search, | |
clean_country_code, | |
get_country_name | |
) | |
unique_country_names = sorted(country_name_mapping.keys()) | |
########################################### | |
# Filter Controls | |
########################################### | |
col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1]) | |
with col1: | |
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions)) | |
if region_filter == "All/Not allocated": | |
filtered_country_names = unique_country_names | |
else: | |
filtered_country_names = [ | |
name for name, code in country_name_mapping.items() | |
if iso_code_to_sub_region.get(code) == region_filter | |
] | |
with col2: | |
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names) | |
with col3: | |
current_year = datetime.now().year | |
default_start_year = current_year - 4 | |
end_year_range = st.slider( | |
"Project End Year", | |
min_value=2010, | |
max_value=max_end_year, | |
value=(default_start_year, max_end_year) | |
) | |
with col4: | |
crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name) | |
crs_filter = st.selectbox("CRS", crs_options) | |
with col5: | |
min_budget = st.slider( | |
"Minimum Project Budget (Million €)", | |
min_value=min_budget_val, | |
max_value=max_budget_val, | |
value=min_budget_val | |
) | |
show_exact_matches = st.checkbox("Show only exact matches", value=False) | |
########################################### | |
# Main Search / Results | |
########################################### | |
if not var.strip(): | |
st.info("Please enter a question to see results.") | |
else: | |
# 1) Perform hybrid search | |
results = hybrid_search(client, var, collection_name, limit=500) | |
semantic_all, lexical_all = results[0], results[1] | |
# Filter out short pages | |
semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5] | |
lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5] | |
# Apply threshold to semantic results if desired | |
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0] | |
# 2) Filter results based on the user’s selections | |
filtered_semantic = filter_results( | |
semantic_thresholded, | |
country_filter, | |
region_filter, | |
end_year_range, | |
crs_filter, | |
min_budget, | |
region_df, | |
iso_code_to_sub_region, | |
clean_country_code, | |
get_country_name | |
) | |
filtered_lexical = filter_results( | |
lexical_all, | |
country_filter, | |
region_filter, | |
end_year_range, | |
crs_filter, | |
min_budget, | |
region_df, | |
iso_code_to_sub_region, | |
clean_country_code, | |
get_country_name | |
) | |
# Remove duplicates | |
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic) | |
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical) | |
def format_currency(value): | |
""" | |
Format a numeric or string value as currency (EUR) with commas. | |
""" | |
try: | |
return f"€{int(float(value)):,}" | |
except (ValueError, TypeError): | |
return value | |
# 3) Display results | |
if show_exact_matches: | |
# Lexical substring match only | |
st.write("Showing **Top 15 Lexical Search results**") | |
query_substring = var.strip().lower() | |
lexical_substring_filtered = [ | |
r for r in lexical_all | |
if query_substring in r.payload["page_content"].lower() | |
] | |
filtered_lexical = filter_results( | |
lexical_substring_filtered, | |
country_filter, | |
region_filter, | |
end_year_range, | |
crs_filter, | |
min_budget, | |
region_df, | |
iso_code_to_sub_region, | |
clean_country_code, | |
get_country_name | |
) | |
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical) | |
if not filtered_lexical_no_dupe: | |
st.write('No exact matches, consider unchecking "Show only exact matches"') | |
else: | |
top_results = filtered_lexical_no_dupe[:10] | |
# RAG answer | |
rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN) | |
st.markdown(f"<h3 style='text-align:center; font-size:1.2em; font-style: italic;'>{var}</h3>", unsafe_allow_html=True) | |
st.write(rag_answer) | |
st.divider() | |
# Show each result | |
for res in top_results: | |
metadata = res.payload.get('metadata', {}) | |
if "title" not in metadata: | |
metadata["title"] = compute_title(metadata) | |
# Title | |
title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"] | |
st.markdown(f"#### {title_html}", unsafe_allow_html=True) | |
# Description snippet | |
objective = metadata.get("objective", "None") | |
desc_en = metadata.get("description.en", "").strip() | |
desc_de = metadata.get("description.de", "").strip() | |
description = desc_en if desc_en else desc_de | |
if not description: | |
description = "No project description available" | |
words = description.split() | |
preview_word_count = 90 | |
preview_text = " ".join(words[:preview_word_count]) | |
remainder_text = " ".join(words[preview_word_count:]) | |
col_left, col_right = st.columns(2) | |
with col_left: | |
st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True) | |
if remainder_text: | |
with st.expander("Show more"): | |
st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True) | |
with col_right: | |
start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown" | |
end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown" | |
total_project = metadata.get('total_project', "Unknown") | |
total_volume = metadata.get('total_volume', "Unknown") | |
formatted_project_budget = format_currency(total_project) | |
formatted_total_volume = format_currency(total_volume) | |
country_raw = metadata.get('country', "Unknown") | |
crs_key = metadata.get("crs_key", "").strip() | |
crs_key_clean = re.sub(r'\.0$', '', str(crs_key)) | |
new_crs_value = lookup_crs_value(crs_key_clean) | |
new_crs_value_clean = re.sub(r'\.0$', '', str(new_crs_value)) | |
crs_combined = f"{crs_key_clean}: {new_crs_value_clean}" if crs_key_clean else "Unknown" | |
# Additional text | |
additional_text = ( | |
f"**Objective:** {highlight_query(objective, var)}<br>" | |
f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}<br>" | |
f"**Projekt duration:** {start_year_str}-{end_year_str}<br>" | |
f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}<br>" | |
f"**Country:** {country_raw}<br>" | |
f"**Sector:** {crs_combined}" | |
) | |
contact = metadata.get("contact", "").strip() | |
if contact and contact.lower() != "[email protected]": | |
additional_text += f"<br>**Contact:** [email protected]" | |
st.markdown(additional_text, unsafe_allow_html=True) | |
st.divider() | |
else: | |
# Semantic results | |
if not filtered_semantic_no_dupe: | |
st.write("No relevant results found.") | |
else: | |
top_results = filtered_semantic_no_dupe[:10] | |
rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN) | |
st.markdown(f"<h2 style='text-align:center; font-size:2.5em;'>{var}</h2>", unsafe_allow_html=True) | |
st.write(rag_answer) | |
st.divider() | |
st.write("Showing **Top 15 Semantic Search results**") | |
for res in top_results: | |
metadata = res.payload.get('metadata', {}) | |
if "title" not in metadata: | |
metadata["title"] = compute_title(metadata) | |
st.markdown(f"#### {metadata['title']}") | |
desc_en = metadata.get("description.en", "").strip() | |
desc_de = metadata.get("description.de", "").strip() | |
description = desc_en if desc_en else desc_de | |
if not description: | |
description = "No project description available" | |
words = description.split() | |
preview_word_count = 90 | |
preview_text = " ".join(words[:preview_word_count]) | |
remainder_text = " ".join(words[preview_word_count:]) | |
col_left, col_right = st.columns(2) | |
with col_left: | |
st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True) | |
if remainder_text: | |
with st.expander("Show more"): | |
st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True) | |
with col_right: | |
start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown" | |
end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown" | |
total_project = metadata.get('total_project', "Unknown") | |
total_volume = metadata.get('total_volume', "Unknown") | |
formatted_project_budget = format_currency(total_project) | |
formatted_total_volume = format_currency(total_volume) | |
country_raw = metadata.get('country', "Unknown") | |
crs_key = metadata.get("crs_key", "").strip() | |
crs_key_clean = re.sub(r'\.0$', '', str(crs_key)) | |
new_crs_value = lookup_crs_value(crs_key_clean) | |
new_crs_value_clean = re.sub(r'\.0$', '', str(new_crs_value)) | |
crs_combined = f"{crs_key_clean}: {new_crs_value_clean}" if crs_key_clean else "Unknown" | |
additional_text = ( | |
f"**Objective:** {metadata.get('objective', '')}<br>" | |
f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}<br>" | |
f"**Projekt duration:** {start_year_str}-{end_year_str}<br>" | |
f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}<br>" | |
f"**Country:** {country_raw}<br>" | |
f"**Sector:** {crs_combined}" | |
) | |
contact = metadata.get("contact", "").strip() | |
if contact and contact.lower() != "[email protected]": | |
additional_text += f"<br>**Contact:** [email protected]" | |
st.markdown(additional_text, unsafe_allow_html=True) | |
st.divider() | |