Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 14,514 Bytes
0130713 1bfcfd5 c2f0c5c 5c789bc c966f4d c258cbb 5a1352d c567921 c966f4d 53d69f4 877e2df 303502f c966f4d 303502f ddf3e12 f15617f ddf3e12 1bfcfd5 303502f c966f4d 303502f ddf3e12 c966f4d ddf3e12 c966f4d ddf3e12 303502f c966f4d 303502f c966f4d 7b37585 303502f f5dac9b 0130713 303502f c966f4d 303502f c966f4d 303502f 83ba479 303502f c966f4d 303502f 8b99f14 c966f4d 83ba479 c966f4d ddf3e12 303502f c966f4d 303502f c567921 5a1352d c966f4d 48484fb 8fdd4c1 c966f4d 367acc4 d845358 c966f4d ddf3e12 c966f4d d845358 7b37585 c966f4d 367acc4 c966f4d d845358 367acc4 c966f4d 77a1d81 7b37585 c966f4d 7b37585 c966f4d ddf3e12 c966f4d d845358 c966f4d fdfd226 3922556 fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 82254d1 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 d6bab54 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d e819134 c966f4d fdfd226 c966f4d fdfd226 3922556 c966f4d fdfd226 c966f4d fdfd226 6f6af13 fdfd226 c966f4d fdfd226 c966f4d 3922556 5a448f6 c966f4d fdfd226 c966f4d e9b7c63 c966f4d e9b7c63 c966f4d fdfd226 c966f4d d845358 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d fdfd226 c966f4d e819134 c966f4d fdfd226 c966f4d fdfd226 8598201 c966f4d fdfd226 c966f4d fdfd226 5a448f6 fdfd226 c966f4d fdfd226 c966f4d 3922556 5a448f6 c966f4d fdfd226 c966f4d e9b7c63 c966f4d fdfd226 c966f4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import streamlit as st
import requests
import pandas as pd
import re
import json
from datetime import datetime
from torch import cuda
# Import existing modules from appStore
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import (
load_region_data,
clean_country_code,
get_country_name,
get_regions,
get_country_name_and_region_mapping
)
# TF-IDF part (excluded from the app for now)
# from appStore.tfidf_extraction import extract_top_keywords
# Import your new helper modules
from appStore.rag_utils import (
highlight_query,
get_rag_answer,
compute_title
)
from appStore.filter_utils import (
parse_budget,
filter_results,
get_crs_options
)
st.set_page_config(page_title="SEARCH IATI", layout='wide')
###########################################
# Global / Model Config
###########################################
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://nwea79x4q1clc89l.eu-west-1.aws.endpoints.huggingface.cloud"
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
###########################################
# Cache the project data
###########################################
@st.cache_data
def load_project_data():
"""
Load and process the GIZ worldwide data, returning a pandas DataFrame.
"""
return process_giz_worldwide()
project_data = load_project_data()
# Determine min and max budgets in million euros
budget_series = pd.to_numeric(project_data['total_project'], errors='coerce').dropna()
min_budget_val = float(budget_series.min() / 1e6)
max_budget_val = float(budget_series.max() / 1e6)
###########################################
# Prepare region data
###########################################
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
###########################################
# Get device
###########################################
device = 'cuda' if cuda.is_available() else 'cpu'
###########################################
# Streamlit App Layout
###########################################
col_title, col_about = st.columns([8, 2])
with col_title:
st.markdown("<h1 style='text-align:center;'>GIZ Project Database (PROTOTYPE)</h1>", unsafe_allow_html=True)
with col_about:
with st.expander("ℹ️ About"):
st.markdown(
"""
This app is a prototype for testing purposes using publicly available project data
from the German International Cooperation Society (GIZ) as of 23rd February 2025.
**Please do NOT enter sensitive or personal information.**
**Note**: The answers are AI-generated and may be wrong or misleading.
""", unsafe_allow_html=True
)
# Main query input
var = st.text_input("Enter Question")
###########################################
# Create or load the embeddings collection
###########################################
collection_name = "giz_worldwide"
client = get_client()
print(client.get_collections())
# If needed, once only:
# chunks = process_giz_worldwide()
# temp_doc = create_documents(chunks, 'chunks')
# hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
max_end_year = get_max_end_year(client, collection_name)
_, unique_sub_regions = get_regions(region_df)
# Build country->code and code->region mapping
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(
client,
collection_name,
region_df,
hybrid_search,
clean_country_code,
get_country_name
)
unique_country_names = sorted(country_name_mapping.keys())
###########################################
# Filter Controls
###########################################
col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1])
with col1:
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))
if region_filter == "All/Not allocated":
filtered_country_names = unique_country_names
else:
filtered_country_names = [
name for name, code in country_name_mapping.items()
if iso_code_to_sub_region.get(code) == region_filter
]
with col2:
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)
with col3:
current_year = datetime.now().year
default_start_year = current_year - 4
end_year_range = st.slider(
"Project End Year",
min_value=2010,
max_value=max_end_year,
value=(default_start_year, max_end_year)
)
with col4:
crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name)
crs_filter = st.selectbox("CRS", crs_options)
with col5:
min_budget = st.slider(
"Minimum Project Budget (Million €)",
min_value=min_budget_val,
max_value=max_budget_val,
value=min_budget_val
)
show_exact_matches = st.checkbox("Show only exact matches", value=False)
###########################################
# Main Search / Results
###########################################
if not var.strip():
st.info("Please enter a question to see results.")
else:
# 1) Perform hybrid search
results = hybrid_search(client, var, collection_name, limit=500)
semantic_all, lexical_all = results[0], results[1]
# Filter out short pages
semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5]
lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5]
# Apply threshold to semantic results if desired
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
# 2) Filter results based on the user’s selections
filtered_semantic = filter_results(
semantic_thresholded,
country_filter,
region_filter,
end_year_range,
crs_filter,
min_budget,
region_df,
iso_code_to_sub_region,
clean_country_code,
get_country_name
)
filtered_lexical = filter_results(
lexical_all,
country_filter,
region_filter,
end_year_range,
crs_filter,
min_budget,
region_df,
iso_code_to_sub_region,
clean_country_code,
get_country_name
)
# Remove duplicates
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
def format_currency(value):
"""
Format a numeric or string value as currency (EUR) with commas.
"""
try:
return f"€{int(float(value)):,}"
except (ValueError, TypeError):
return value
# 3) Display results
if show_exact_matches:
# Lexical substring match only
st.write("Showing **Top 15 Lexical Search results**")
query_substring = var.strip().lower()
lexical_substring_filtered = [
r for r in lexical_all
if query_substring in r.payload["page_content"].lower()
]
filtered_lexical = filter_results(
lexical_substring_filtered,
country_filter,
region_filter,
end_year_range,
crs_filter,
min_budget,
region_df,
iso_code_to_sub_region,
clean_country_code,
get_country_name
)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
if not filtered_lexical_no_dupe:
st.write('No exact matches, consider unchecking "Show only exact matches"')
else:
top_results = filtered_lexical_no_dupe[:10]
# RAG answer
rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN)
st.markdown(f"<h2 style='text-align:center; font-size:1.5em;'>{var}</h2>", unsafe_allow_html=True)
st.write(rag_answer)
st.divider()
# Show each result
for res in top_results:
metadata = res.payload.get('metadata', {})
if "title" not in metadata:
metadata["title"] = compute_title(metadata)
# Title
title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
st.markdown(f"#### {title_html}", unsafe_allow_html=True)
# Description snippet
objective = metadata.get("objective", "None")
desc_en = metadata.get("description.en", "").strip()
desc_de = metadata.get("description.de", "").strip()
description = desc_en if desc_en else desc_de
if not description:
description = "No project description available"
words = description.split()
preview_word_count = 90
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
col_left, col_right = st.columns(2)
with col_left:
st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True)
if remainder_text:
with st.expander("Show more"):
st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True)
with col_right:
start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown"
end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown"
total_project = metadata.get('total_project', "Unknown")
total_volume = metadata.get('total_volume', "Unknown")
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
country_raw = metadata.get('country', "Unknown")
crs_key = metadata.get("crs_key", "").strip()
# Additional text
additional_text = (
f"**Objective:** {highlight_query(objective, var)}<br>"
f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}<br>"
f"**Projekt duration:** {start_year_str}-{end_year_str}<br>"
f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}<br>"
f"**Country:** {country_raw}<br>"
f"**Sector:** {crs_key if crs_key else 'Unknown'}"
)
contact = metadata.get("contact", "").strip()
if contact and contact.lower() != "[email protected]":
additional_text += f"<br>**Contact:** [email protected]"
st.markdown(additional_text, unsafe_allow_html=True)
st.divider()
else:
# Semantic results
if not filtered_semantic_no_dupe:
st.write("No relevant results found.")
else:
top_results = filtered_semantic_no_dupe[:10]
rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN)
st.markdown(f"<h2 style='text-align:center; font-size:2.5em;'>{var}</h2>", unsafe_allow_html=True)
st.write(rag_answer)
st.divider()
st.write("Showing **Top 15 Semantic Search results**")
for res in top_results:
metadata = res.payload.get('metadata', {})
if "title" not in metadata:
metadata["title"] = compute_title(metadata)
st.markdown(f"#### {metadata['title']}")
desc_en = metadata.get("description.en", "").strip()
desc_de = metadata.get("description.de", "").strip()
description = desc_en if desc_en else desc_de
if not description:
description = "No project description available"
words = description.split()
preview_word_count = 90
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
col_left, col_right = st.columns(2)
with col_left:
st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True)
if remainder_text:
with st.expander("Show more"):
st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True)
with col_right:
start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown"
end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown"
total_project = metadata.get('total_project', "Unknown")
total_volume = metadata.get('total_volume', "Unknown")
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
country_raw = metadata.get('country', "Unknown")
crs_key = metadata.get("crs_key", "").strip()
additional_text = (
f"**Objective:** {metadata.get('objective', '')}<br>"
f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}<br>"
f"**Projekt duration:** {start_year_str}-{end_year_str}<br>"
f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}<br>"
f"**Country:** {country_raw}<br>"
f"**Sector:** {crs_key if crs_key else 'Unknown'}"
)
contact = metadata.get("contact", "").strip()
if contact and contact.lower() != "[email protected]":
additional_text += f"<br>**Contact:** [email protected]"
st.markdown(additional_text, unsafe_allow_html=True)
st.divider()
|