File size: 14,514 Bytes
0130713
1bfcfd5
c2f0c5c
5c789bc
c966f4d
 
 
 
 
c258cbb
5a1352d
 
c567921
c966f4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d69f4
877e2df
 
 
303502f
c966f4d
303502f
ddf3e12
f15617f
ddf3e12
 
1bfcfd5
303502f
c966f4d
303502f
ddf3e12
 
c966f4d
 
 
ddf3e12
 
 
 
c966f4d
ddf3e12
 
 
 
303502f
c966f4d
303502f
c966f4d
 
7b37585
303502f
 
 
f5dac9b
0130713
303502f
c966f4d
303502f
c966f4d
303502f
 
 
83ba479
303502f
 
c966f4d
 
303502f
8b99f14
c966f4d
 
83ba479
c966f4d
ddf3e12
 
303502f
c966f4d
303502f
c567921
5a1352d
 
c966f4d
 
 
 
 
 
48484fb
8fdd4c1
 
c966f4d
 
 
 
 
 
 
 
 
367acc4
d845358
c966f4d
 
 
ddf3e12
c966f4d
d845358
7b37585
c966f4d
367acc4
 
 
c966f4d
 
 
 
 
d845358
367acc4
c966f4d
77a1d81
 
7b37585
c966f4d
 
 
 
 
 
 
7b37585
 
 
c966f4d
 
ddf3e12
 
 
 
c966f4d
 
d845358
 
 
c966f4d
 
 
fdfd226
3922556
fdfd226
c966f4d
fdfd226
c966f4d
 
 
fdfd226
 
c966f4d
 
fdfd226
c966f4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfd226
82254d1
c966f4d
fdfd226
c966f4d
 
 
fdfd226
 
 
 
c966f4d
 
fdfd226
c966f4d
fdfd226
 
c966f4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfd226
 
 
 
 
c966f4d
 
fdfd226
 
d6bab54
c966f4d
 
fdfd226
 
 
 
c966f4d
 
fdfd226
 
c966f4d
 
fdfd226
 
 
c966f4d
e819134
 
c966f4d
fdfd226
 
 
c966f4d
fdfd226
 
3922556
 
 
 
c966f4d
fdfd226
c966f4d
 
fdfd226
 
 
 
6f6af13
fdfd226
c966f4d
 
fdfd226
c966f4d
 
3922556
 
5a448f6
c966f4d
fdfd226
c966f4d
e9b7c63
 
c966f4d
e9b7c63
c966f4d
fdfd226
c966f4d
d845358
c966f4d
fdfd226
 
 
 
c966f4d
fdfd226
 
 
 
c966f4d
fdfd226
 
 
 
c966f4d
fdfd226
c966f4d
fdfd226
 
c966f4d
e819134
c966f4d
 
 
fdfd226
 
 
c966f4d
fdfd226
 
8598201
 
 
 
c966f4d
fdfd226
c966f4d
 
fdfd226
 
 
 
5a448f6
fdfd226
c966f4d
fdfd226
c966f4d
 
3922556
 
5a448f6
c966f4d
fdfd226
c966f4d
e9b7c63
 
c966f4d
fdfd226
c966f4d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import streamlit as st
import requests
import pandas as pd
import re
import json
from datetime import datetime
from torch import cuda

# Import existing modules from appStore
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import (
    load_region_data, 
    clean_country_code, 
    get_country_name, 
    get_regions, 
    get_country_name_and_region_mapping  
)
# TF-IDF part (excluded from the app for now)
# from appStore.tfidf_extraction import extract_top_keywords

# Import your new helper modules
from appStore.rag_utils import (
    highlight_query,
    get_rag_answer,
    compute_title
)
from appStore.filter_utils import (
    parse_budget,
    filter_results,
    get_crs_options
)

st.set_page_config(page_title="SEARCH IATI", layout='wide')


###########################################
# Global / Model Config
###########################################
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://nwea79x4q1clc89l.eu-west-1.aws.endpoints.huggingface.cloud"
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]


###########################################
# Cache the project data
###########################################
@st.cache_data
def load_project_data():
    """
    Load and process the GIZ worldwide data, returning a pandas DataFrame.
    """
    return process_giz_worldwide()

project_data = load_project_data()

# Determine min and max budgets in million euros
budget_series = pd.to_numeric(project_data['total_project'], errors='coerce').dropna()
min_budget_val = float(budget_series.min() / 1e6)
max_budget_val = float(budget_series.max() / 1e6)

###########################################
# Prepare region data
###########################################
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)

###########################################
# Get device
###########################################
device = 'cuda' if cuda.is_available() else 'cpu'

###########################################
# Streamlit App Layout
###########################################
col_title, col_about = st.columns([8, 2])
with col_title:
    st.markdown("<h1 style='text-align:center;'>GIZ Project Database (PROTOTYPE)</h1>", unsafe_allow_html=True)
with col_about:
    with st.expander("ℹ️ About"):
        st.markdown(
            """
            This app is a prototype for testing purposes using publicly available project data 
            from the German International Cooperation Society (GIZ) as of 23rd February 2025.  
            **Please do NOT enter sensitive or personal information.**  
            **Note**: The answers are AI-generated and may be wrong or misleading.
            """, unsafe_allow_html=True
        )

# Main query input
var = st.text_input("Enter Question")

###########################################
# Create or load the embeddings collection
###########################################
collection_name = "giz_worldwide"
client = get_client()
print(client.get_collections())

# If needed, once only:
# chunks = process_giz_worldwide()
# temp_doc = create_documents(chunks, 'chunks')
# hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)

max_end_year = get_max_end_year(client, collection_name)
_, unique_sub_regions = get_regions(region_df)

# Build country->code and code->region mapping
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(
    client, 
    collection_name, 
    region_df,
    hybrid_search, 
    clean_country_code, 
    get_country_name
)
unique_country_names = sorted(country_name_mapping.keys())

###########################################
# Filter Controls
###########################################
col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1])

with col1:
    region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))

if region_filter == "All/Not allocated":
    filtered_country_names = unique_country_names
else:
    filtered_country_names = [
        name for name, code in country_name_mapping.items() 
        if iso_code_to_sub_region.get(code) == region_filter
    ]

with col2:
    country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)

with col3:
    current_year = datetime.now().year
    default_start_year = current_year - 4
    end_year_range = st.slider(
        "Project End Year", 
        min_value=2010, 
        max_value=max_end_year, 
        value=(default_start_year, max_end_year)
    )

with col4:
    crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name)
    crs_filter = st.selectbox("CRS", crs_options)

with col5:
    min_budget = st.slider(
        "Minimum Project Budget (Million €)",
        min_value=min_budget_val,
        max_value=max_budget_val,
        value=min_budget_val
    )

show_exact_matches = st.checkbox("Show only exact matches", value=False)

###########################################
# Main Search / Results
###########################################
if not var.strip():
    st.info("Please enter a question to see results.")
else:
    # 1) Perform hybrid search
    results = hybrid_search(client, var, collection_name, limit=500)
    semantic_all, lexical_all = results[0], results[1]

    # Filter out short pages
    semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5]
    lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5]

    # Apply threshold to semantic results if desired
    semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]

    # 2) Filter results based on the user’s selections
    filtered_semantic = filter_results(
        semantic_thresholded, 
        country_filter, 
        region_filter, 
        end_year_range, 
        crs_filter, 
        min_budget,
        region_df, 
        iso_code_to_sub_region,
        clean_country_code,
        get_country_name
    )
    filtered_lexical = filter_results(
        lexical_all, 
        country_filter, 
        region_filter, 
        end_year_range, 
        crs_filter, 
        min_budget,
        region_df, 
        iso_code_to_sub_region,
        clean_country_code,
        get_country_name
    )

    # Remove duplicates
    filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
    filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)

    def format_currency(value):
        """
        Format a numeric or string value as currency (EUR) with commas.
        """
        try:
            return f"€{int(float(value)):,}"
        except (ValueError, TypeError):
            return value

    # 3) Display results
    if show_exact_matches:
        # Lexical substring match only
        st.write("Showing **Top 15 Lexical Search results**")
        query_substring = var.strip().lower()
        lexical_substring_filtered = [
            r for r in lexical_all 
            if query_substring in r.payload["page_content"].lower()
        ]
        filtered_lexical = filter_results(
            lexical_substring_filtered, 
            country_filter, 
            region_filter, 
            end_year_range, 
            crs_filter, 
            min_budget,
            region_df, 
            iso_code_to_sub_region,
            clean_country_code,
            get_country_name
        )
        filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
        if not filtered_lexical_no_dupe:
            st.write('No exact matches, consider unchecking "Show only exact matches"')
        else:
            top_results = filtered_lexical_no_dupe[:10]
            # RAG answer
            rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN)
            st.markdown(f"<h2 style='text-align:center; font-size:1.5em;'>{var}</h2>", unsafe_allow_html=True)
            st.write(rag_answer)
            st.divider()

            # Show each result
            for res in top_results:
                metadata = res.payload.get('metadata', {})
                if "title" not in metadata:
                    metadata["title"] = compute_title(metadata)
                
                # Title
                title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
                st.markdown(f"#### {title_html}", unsafe_allow_html=True)

                # Description snippet
                objective = metadata.get("objective", "None")
                desc_en = metadata.get("description.en", "").strip()
                desc_de = metadata.get("description.de", "").strip()
                description = desc_en if desc_en else desc_de
                if not description:
                    description = "No project description available"
                words = description.split()
                preview_word_count = 90
                preview_text = " ".join(words[:preview_word_count])
                remainder_text = " ".join(words[preview_word_count:])

                col_left, col_right = st.columns(2)
                with col_left:
                    st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True)
                    if remainder_text:
                        with st.expander("Show more"):
                            st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True)

                with col_right:
                    start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown"
                    end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown"
                    total_project = metadata.get('total_project', "Unknown")
                    total_volume = metadata.get('total_volume', "Unknown")
                    formatted_project_budget = format_currency(total_project)
                    formatted_total_volume = format_currency(total_volume)
                    country_raw = metadata.get('country', "Unknown")
                    crs_key = metadata.get("crs_key", "").strip()

                    # Additional text
                    additional_text = (
                        f"**Objective:** {highlight_query(objective, var)}<br>"
                        f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}<br>"
                        f"**Projekt duration:** {start_year_str}-{end_year_str}<br>"
                        f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}<br>"
                        f"**Country:** {country_raw}<br>"
                        f"**Sector:** {crs_key if crs_key else 'Unknown'}"
                    )
                    contact = metadata.get("contact", "").strip()
                    if contact and contact.lower() != "[email protected]":
                        additional_text += f"<br>**Contact:** [email protected]"

                    st.markdown(additional_text, unsafe_allow_html=True)

                st.divider()

    else:
        # Semantic results
        if not filtered_semantic_no_dupe:
            st.write("No relevant results found.")
        else:
            top_results = filtered_semantic_no_dupe[:10]
            rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN)
            st.markdown(f"<h2 style='text-align:center; font-size:2.5em;'>{var}</h2>", unsafe_allow_html=True)
            st.write(rag_answer)
            st.divider()
            st.write("Showing **Top 15 Semantic Search results**")

            for res in top_results:
                metadata = res.payload.get('metadata', {})
                if "title" not in metadata:
                    metadata["title"] = compute_title(metadata)
                
                st.markdown(f"#### {metadata['title']}")

                desc_en = metadata.get("description.en", "").strip()
                desc_de = metadata.get("description.de", "").strip()
                description = desc_en if desc_en else desc_de
                if not description:
                    description = "No project description available"
                
                words = description.split()
                preview_word_count = 90
                preview_text = " ".join(words[:preview_word_count])
                remainder_text = " ".join(words[preview_word_count:])

                col_left, col_right = st.columns(2)
                with col_left:
                    st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True)
                    if remainder_text:
                        with st.expander("Show more"):
                            st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True)

                with col_right:
                    start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown"
                    end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown"
                    total_project = metadata.get('total_project', "Unknown")
                    total_volume = metadata.get('total_volume', "Unknown")
                    formatted_project_budget = format_currency(total_project)
                    formatted_total_volume = format_currency(total_volume)
                    country_raw = metadata.get('country', "Unknown")
                    crs_key = metadata.get("crs_key", "").strip()

                    additional_text = (
                        f"**Objective:** {metadata.get('objective', '')}<br>"
                        f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}<br>"
                        f"**Projekt duration:** {start_year_str}-{end_year_str}<br>"
                        f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}<br>"
                        f"**Country:** {country_raw}<br>"
                        f"**Sector:** {crs_key if crs_key else 'Unknown'}"
                    )
                    contact = metadata.get("contact", "").strip()
                    if contact and contact.lower() != "[email protected]":
                        additional_text += f"<br>**Contact:** [email protected]"

                    st.markdown(additional_text, unsafe_allow_html=True)

                st.divider()