Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 19,148 Bytes
0130713 1bfcfd5 c2f0c5c 5c789bc c258cbb 5a1352d c567921 8fdd4c1 8225c93 cb359de 9d9ace2 53d69f4 08da20e 1bfcfd5 94a0b34 08da20e 1bfcfd5 bc8ecee d237e1f 1bfcfd5 94a0b34 035b045 1bfcfd5 f2efbb4 1bfcfd5 035b045 1bfcfd5 367acc4 7b37585 367acc4 7b37585 367acc4 7b37585 540cd3a 7b37585 94a0b34 7b37585 367acc4 7b37585 390ed12 367acc4 7b37585 367acc4 7b37585 367acc4 7b37585 367acc4 f5dac9b 0130713 367acc4 3346614 7b37585 e4b8dd5 367acc4 88e2023 9392032 47177b9 7da963b 47177b9 7da963b 47177b9 c567921 7da963b 5170600 b08d54a 5a1352d 48484fb 8fdd4c1 d845358 8fdd4c1 d845358 043c4b1 d845358 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 d845358 88e2023 8fdd4c1 367acc4 d845358 367acc4 bc8ecee d845358 7b37585 367acc4 d845358 367acc4 77a1d81 7b37585 d845358 367acc4 d845358 367acc4 d6bab54 367acc4 d6bab54 5ee7936 d6bab54 7b37585 367acc4 d6bab54 a5158de 367acc4 7b37585 d6bab54 7b37585 82254d1 d6bab54 e323495 5fc3c7d 1aa01e9 5fc3c7d 67f6d38 7b37585 1aa01e9 a5158de 1aa01e9 bc8ecee 2be935d 1061240 a5158de 5c4bc96 a5158de e323495 47177b9 7b37585 a5158de d6bab54 47177b9 5c789bc 47177b9 7b37585 47177b9 1aa01e9 5c789bc 1aa01e9 5c789bc bc8ecee 5c789bc 1aa01e9 5c789bc d6bab54 82254d1 7b37585 d6bab54 d845358 e323495 1bfcfd5 1aa01e9 1bfcfd5 d23e52b 1bfcfd5 77a1d81 7b37585 1061240 bc8ecee 2be935d 1061240 77a1d81 5c4bc96 77a1d81 e323495 47177b9 7b37585 d6bab54 47177b9 5c789bc 47177b9 7b37585 47177b9 5c789bc 1aa01e9 5c789bc bc8ecee 5c789bc 1aa01e9 5c789bc d6bab54 5c789bc 47177b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import streamlit as st
import requests
import pandas as pd
import re
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords
from torch import cuda
import json
from datetime import datetime
#model_config = getconfig("model_params.cfg")
###########
# ToDo move functions to utils and model specifications to config file!
# Configuration for the dedicated model
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingface.cloud"
# Write access token from the settings
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
def get_rag_answer(query, top_results):
context = "\n\n".join([res.payload["page_content"] for res in top_results])
max_context_chars = 13500
if len(context) > max_context_chars:
context = context[:max_context_chars]
prompt = (
"You are a project portfolio adviser at the development cooperation GIZ. "
"Using the following context, answer the question precisely. "
"Only output the final answer below, without repeating the context or question.\n\n"
f"Context:\n{context}\n\n"
f"Question: {query}\n\n"
"Answer:"
)
headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": 220}
}
response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
answer = result[0]["generated_text"]
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
return answer
else:
return f"Error in generating answer: {response.text}"
# Helper: Format project id (e.g., "201940485" -> "2019.4048.5")
def format_project_id(pid):
s = str(pid)
if len(s) > 5:
return s[:4] + "." + s[4:-1] + "." + s[-1]
return s
# Helper: Compute title from metadata using name.en (or name.de if empty)
def compute_title(metadata):
name_en = metadata.get("name.en", "").strip()
name_de = metadata.get("name.de", "").strip()
base = name_en if name_en else name_de
pid = metadata.get("id", "")
if base and pid:
return f"{base} [{format_project_id(pid)}]"
return base or "No Title"
# Helper: Get CRS filter options from all documents
@st.cache_data
def get_crs_options(_client, collection_name):
results = hybrid_search(_client, "", collection_name)
all_results = results[0] + results[1]
crs_set = set()
for res in all_results:
metadata = res.payload.get('metadata', {})
crs_key = metadata.get("crs_key", "").strip()
crs_value = metadata.get("crs_value", "").strip()
if crs_key or crs_value:
# Convert crs_value to integer if possible:
try:
crs_int = int(float(crs_value))
except:
crs_int = crs_value
crs_combined = f"{crs_key}: {crs_int}"
crs_set.add(crs_combined)
return sorted(crs_set)
# Revised filter_results: Allow missing end_year or CRS; enforce CRS only when present.
def filter_results(results, country_filter, region_filter, end_year_range, crs_filter):
filtered = []
for r in results:
metadata = r.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
year_str = metadata.get('end_year')
if year_str:
extracted = extract_year(year_str)
try:
end_year_val = int(extracted) if extracted != "Unknown" else 0
except ValueError:
end_year_val = 0
else:
end_year_val = 0
try:
c_list = json.loads(countries.replace("'", '"'))
c_list = [code.upper() for code in c_list if len(code) == 2]
except json.JSONDecodeError:
c_list = []
selected_iso_code = country_name_mapping.get(country_filter, None)
if region_filter != "All/Not allocated":
countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
else:
countries_in_region = c_list
crs_key = metadata.get("crs_key", "").strip()
crs_value = metadata.get("crs_value", "").strip()
try:
crs_int = int(float(crs_value))
except:
crs_int = crs_value
crs_combined = f"{crs_key}: {crs_int}" if (crs_key or crs_value) else ""
# Only enforce CRS filter if result has a CRS value.
if crs_filter != "All/Not allocated" and crs_combined:
if crs_filter != crs_combined:
continue
# Allow projects with no valid end_year to pass (if end_year_val is 0)
year_ok = True if end_year_val == 0 else (end_year_range[0] <= end_year_val <= end_year_range[1])
if ((country_filter == "All/Not allocated" or (selected_iso_code and selected_iso_code in c_list))
and (region_filter == "All/Not allocated" or countries_in_region)
and year_ok):
filtered.append(r)
return filtered
# Get the device to be used (GPU or CPU)
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI", layout='wide')
st.title("GIZ Project Database (PROTOTYPE)")
var = st.text_input("Enter Search Question")
# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
#################### Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
################### Hybrid Search #####################################################
client = get_client()
print(client.get_collections())
max_end_year = get_max_end_year(client, collection_name)
_, unique_sub_regions = get_regions(region_df)
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
country_set.update(two_digit_codes)
except json.JSONDecodeError:
pass
country_name_to_code = {}
iso_code_to_sub_region = {}
for code in country_set:
name = get_country_name(code, region_df)
sub_region_row = region_df[region_df['alpha-2'] == code]
sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
country_name_to_code[name] = code
iso_code_to_sub_region[code] = sub_region
return country_name_to_code, iso_code_to_sub_region
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys())
# Layout filters in columns
col1, col2, col3, col4 = st.columns([1, 1, 1, 1])
with col1:
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))
# Compute filtered_country_names based on region_filter:
if region_filter == "All/Not allocated":
filtered_country_names = unique_country_names
else:
filtered_country_names = [name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter]
with col2:
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)
with col3:
current_year = datetime.now().year
default_start_year = current_year - 4
end_year_range = st.slider("Project End Year", min_value=2010, max_value=max_end_year, value=(default_start_year, max_end_year))
with col4:
crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name)
crs_filter = st.selectbox("CRS", crs_options)
# Checkbox for exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
# Run the search
results = hybrid_search(client, var, collection_name, limit=500)
semantic_all = results[0]
lexical_all = results[1]
semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5]
lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5]
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter)
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range, crs_filter)
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
def format_currency(value):
try:
return f"€{int(float(value)):,}"
except (ValueError, TypeError):
return value
# Helper to highlight query matches (case-insensitive)
def highlight_query(text, query):
pattern = re.compile(re.escape(query), re.IGNORECASE)
return pattern.sub(lambda m: f"**{m.group(0)}**", text)
###############################
# Display Lexical Results Branch
###############################
if show_exact_matches:
st.write(f"Showing **Top 15 Lexical Search results** for query: {var}")
query_substring = var.strip().lower()
lexical_substring_filtered = [r for r in lexical_all if query_substring in r.payload["page_content"].lower()]
filtered_lexical = filter_results(lexical_substring_filtered, country_filter, region_filter, end_year_range, crs_filter)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
if not filtered_lexical_no_dupe:
st.write('No exact matches, consider unchecking "Show only exact matches"')
else:
top_results = filtered_lexical_no_dupe[:10]
rag_answer = get_rag_answer(var, top_results)
st.markdown(f"**{var}**")
st.write(rag_answer)
st.divider()
for res in top_results:
metadata = res.payload.get('metadata', {})
if "title" not in metadata:
metadata["title"] = compute_title(metadata)
# Highlight query in red and bold (allow HTML)
display_title = (
st.markdown(highlight_query(metadata["title"], var), unsafe_allow_html=True)
if var.strip() else metadata["title"]
)
proj_id = metadata.get('id', 'Unknown')
st.markdown(f"#### {metadata['title']}")
countries = metadata.get('countries')
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
total_volume = metadata.get('total_volume', "Unknown")
total_project = metadata.get('total_project', "Unknown")
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"{objectives} {description}"
words = full_snippet.split()
preview_word_count = 90
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
preview_text = highlight_query(preview_text, var) if var.strip() else preview_text
st.write(preview_text)
if remainder_text:
with st.expander("Show more"):
st.write(remainder_text)
full_text = res.payload['page_content']
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
# Format year range and budget info
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
# Compute matched country names (as before)
try:
c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
except json.JSONDecodeError:
c_list = []
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
# Compute CRS combined value as integer
crs_key = metadata.get("crs_key", "").strip()
crs_value = metadata.get("crs_value", "").strip()
try:
crs_int = int(float(crs_value))
except:
crs_int = crs_value
crs_combined = f"{crs_key}: {crs_int}" if (crs_key or crs_value) else "Unknown"
# Build the additional text with original details, then add Sector and contact.
additional_text = (
f"Commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(matched_countries)}**\n"
f"Sector: **{crs_combined}**"
)
#contact = metadata.get("contact", "").strip()
#if contact and contact.lower() != "[email protected]":
# additional_text += f" | Contact: **{contact}**"
st.markdown(additional_text)
st.divider()
###############################
# Display Semantic Results Branch
###############################
else:
if not filtered_semantic_no_dupe:
st.write("No relevant results found.")
else:
top_results = filtered_semantic_no_dupe[:10]
rag_answer = get_rag_answer(var, top_results)
st.markdown(f"**{var}**")
st.write(rag_answer)
st.divider()
st.write(f"Showing **Top 15 Semantic Search results** for query: {var}")
for res in top_results:
metadata = res.payload.get('metadata', {})
if "title" not in metadata:
metadata["title"] = compute_title(metadata)
display_title = metadata["title"]
st.markdown(f"#### {display_title}")
countries = metadata.get('countries')
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
total_volume = metadata.get('total_volume', "Unknown")
total_project = metadata.get('total_project', "Unknown")
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"{objectives} {description}"
words = full_snippet.split()
preview_word_count = 90
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text)
if remainder_text:
with st.expander("Show more"):
st.write(remainder_text)
top_keywords = extract_top_keywords(res.payload['page_content'], top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
# Format year range and budget info
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
# Compute matched country names (as before)
try:
c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
except json.JSONDecodeError:
c_list = []
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
# Compute CRS combined value
crs_key = metadata.get("crs_key", "").strip()
crs_value = metadata.get("crs_value", "").strip()
try:
crs_int = int(float(crs_value))
except:
crs_int = crs_value
crs_combined = f"{crs_key}: {crs_int}" if (crs_key or crs_value) else "Unknown"
# Build the additional text with original details, then add Sector and contact.
additional_text = (
f"Commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n"
f"Country: **{', '.join(matched_countries)}**\n"
f"Sector: **{crs_combined}**"
)
#contact = metadata.get("contact", "").strip()
#if contact and contact.lower() != "[email protected]":
# additional_text += f" | Contact: **{contact}**"
st.markdown(additional_text)
st.divider()
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider() |