Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 22,513 Bytes
0130713 1bfcfd5 c2f0c5c 5c789bc c258cbb 5a1352d c567921 8fdd4c1 303502f cb359de 9d9ace2 53d69f4 877e2df 303502f 08da20e 303502f 08da20e 303502f 7cb3d61 303502f 1bfcfd5 303502f ddf3e12 1bfcfd5 303502f 1bfcfd5 94a0b34 303502f 035b045 1bfcfd5 f2efbb4 1bfcfd5 035b045 1bfcfd5 303502f 7b37585 540cd3a 7b37585 c16b369 303502f 7b37585 ddf3e12 303502f 7b37585 303502f 367acc4 303502f 367acc4 7b37585 367acc4 7b37585 367acc4 7b37585 303502f f5dac9b 0130713 303502f ddf3e12 e4b8dd5 303502f 88e2023 303502f 47177b9 7da963b 47177b9 7da963b 47177b9 c567921 7da963b 5170600 303502f 5a1352d 48484fb 8fdd4c1 d845358 8fdd4c1 d845358 043c4b1 d845358 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 d845358 88e2023 8fdd4c1 367acc4 d845358 303502f ddf3e12 d845358 7b37585 367acc4 d845358 367acc4 77a1d81 7b37585 ddf3e12 d845358 367acc4 d845358 303502f 367acc4 d6bab54 367acc4 5ee7936 d6bab54 303502f 367acc4 d6bab54 a5158de 367acc4 303502f d6bab54 303502f d6bab54 7b37585 303502f 82254d1 d6bab54 e323495 5fc3c7d 303502f 5fc3c7d 67f6d38 7b37585 303502f a5158de 303502f 5c4bc96 a5158de e323495 47177b9 303502f d6bab54 82254d1 303502f d6bab54 d845358 e323495 1bfcfd5 303502f 1bfcfd5 303502f 1bfcfd5 77a1d81 7b37585 303502f 77a1d81 303502f 5c4bc96 77a1d81 e323495 47177b9 7b37585 303502f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import streamlit as st
import requests
import pandas as pd
import re
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
#from appStore.tfidf_extraction import extract_top_keywords # TF-IDF part commented out
from torch import cuda
import json
from datetime import datetime
st.set_page_config(page_title="SEARCH IATI", layout='wide')
###########################################
# Helper functions for data processing
###########################################
# New helper: Truncate a text to a given (approximate) token count.
def truncate_to_tokens(text, max_tokens):
tokens = text.split() # simple approximation
if len(tokens) > max_tokens:
return " ".join(tokens[:max_tokens])
return text
# Build a context string for a single result using title, objectives and description.
def build_context_for_result(res):
metadata = res.payload.get('metadata', {})
# Compute title if not already present.
title = metadata.get("title", compute_title(metadata))
objectives = metadata.get("objectives", "")
# Use description.en if available; otherwise use description.de.
desc_en = metadata.get("description.en", "").strip()
desc_de = metadata.get("description.de", "").strip()
description = desc_en if desc_en != "" else desc_de
return f"{title}\n{objectives}\n{description}"
# Updated highlight: return HTML that makes the matched query red and bold.
def highlight_query(text, query):
pattern = re.compile(re.escape(query), re.IGNORECASE)
return pattern.sub(lambda m: f"<span style='color:red; font-weight:bold;'>{m.group(0)}</span>", text)
# Helper: Format project id (e.g., "201940485" -> "2019.4048.5")
def format_project_id(pid):
s = str(pid)
if len(s) > 5:
return s[:4] + "." + s[4:-1] + "." + s[-1]
return s
# Helper: Compute title from metadata using name.en (or name.de if empty)
def compute_title(metadata):
name_en = metadata.get("name.en", "").strip()
name_de = metadata.get("name.de", "").strip()
base = name_en if name_en else name_de
pid = metadata.get("id", "")
if base and pid:
return f"{base} [{format_project_id(pid)}]"
return base or "No Title"
# Load CRS lookup CSV and define a lookup function.
crs_lookup = pd.read_csv("docStore/crs5_codes.csv") # Assumes columns: "code" and "new_crs_value"
def lookup_crs_value(crs_key):
row = crs_lookup[crs_lookup["code"] == crs_key]
if not row.empty:
# Convert to integer (drop decimals) and then to string.
try:
return str(int(float(row.iloc[0]["new_crs_value"])))
except:
return str(row.iloc[0]["new_crs_value"])
return ""
###########################################
# RAG Answer function (Change 1 & 2 & 3)
###########################################
# ToDo move functions to utils and model specifications to config file!
# Configuration for the dedicated model
#https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingface.cloud
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://nwea79x4q1clc89l.eu-west-1.aws.endpoints.huggingface.cloud"
# Write access token from the settings
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
def get_rag_answer(query, top_results):
# Build context from each top result using title, objectives, and description.
context = "\n\n".join([build_context_for_result(res) for res in top_results])
# Truncate context to 11500 tokens (approximation)
context = truncate_to_tokens(context, 11500)
# Improved prompt with role instruction and formatting instruction.
prompt = (
"You are a project portfolio adviser at the development cooperation GIZ. "
"Using the following context, answer the question in English precisely. "
"Ensure that any project title mentioned in your answer is wrapped in ** (markdown bold). "
"Only output the final answer below, without repeating the context or question.\n\n"
f"Context:\n{context}\n\n"
f"Question: {query}\n\n"
"Answer:"
)
headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": 220}
}
response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
answer = result[0]["generated_text"]
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
return answer
else:
return f"Error in generating answer: {response.text}"
###########################################
# CRS Options using lookup (Change 7)
###########################################
@st.cache_data
def get_crs_options(_client, collection_name):
results = hybrid_search(_client, "", collection_name)
all_results = results[0] + results[1]
crs_set = set()
for res in all_results:
metadata = res.payload.get('metadata', {})
crs_key = metadata.get("crs_key", "").strip()
if crs_key:
new_value = lookup_crs_value(crs_key)
crs_combined = f"{crs_key}: {new_value}"
crs_set.add(crs_combined)
return sorted(crs_set)
@st.cache_data
def load_project_data():
# Load your full project DataFrame using your processing function.
return process_giz_worldwide()
# Load the project data (cached)
project_data = load_project_data()
# Convert the 'total_project' column to numeric (dropping errors) and compute min and max.
# The budget is assumed to be in euros, so we convert to million euros.
budget_series = pd.to_numeric(project_data['total_project'], errors='coerce').dropna()
min_budget_val = float(budget_series.min() / 1e6)
max_budget_val = float(budget_series.max() / 1e6)
###########################################
# Revised filter_results with budget filtering (Change 7 & 9)
###########################################
def parse_budget(value):
try:
return float(value)
except:
return 0.0
def filter_results(results, country_filter, region_filter, end_year_range, crs_filter, budget_filter):
filtered = []
for r in results:
metadata = r.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
year_str = metadata.get('end_year')
if year_str:
extracted = extract_year(year_str)
try:
end_year_val = int(extracted) if extracted != "Unknown" else 0
except ValueError:
end_year_val = 0
else:
end_year_val = 0
try:
c_list = json.loads(countries.replace("'", '"'))
c_list = [code.upper() for code in c_list if len(code) == 2]
except json.JSONDecodeError:
c_list = []
selected_iso_code = country_name_mapping.get(country_filter, None)
if region_filter != "All/Not allocated":
countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
else:
countries_in_region = c_list
crs_key = metadata.get("crs_key", "").strip()
# Use lookup value instead of stored crs_value.
new_crs_value = lookup_crs_value(crs_key)
crs_combined = f"{crs_key}: {new_crs_value}" if crs_key else ""
# Enforce CRS filter only if specified.
if crs_filter != "All/Not allocated" and crs_combined:
if crs_filter != crs_combined:
continue
# Budget filtering: parse total_project value.
budget_value = parse_budget(metadata.get('total_project', "0"))
# Only keep results with budget >= budget_filter (in million euros, so multiply by 1e6)
if budget_value < (budget_filter * 1e6):
continue
year_ok = True if end_year_val == 0 else (end_year_range[0] <= end_year_val <= end_year_range[1])
if ((country_filter == "All/Not allocated" or (selected_iso_code and selected_iso_code in c_list))
and (region_filter == "All/Not allocated" or countries_in_region)
and year_ok):
filtered.append(r)
return filtered
###########################################
# Get device
###########################################
device = 'cuda' if cuda.is_available() else 'cpu'
###########################################
# App heading and About button (Change 5 & 6)
###########################################
col_title, col_about = st.columns([8,2])
with col_title:
st.markdown("<h1 style='text-align:center;'>GIZ Project Database (PROTOTYPE)</h1>", unsafe_allow_html=True)
with col_about:
with st.expander("About"):
st.markdown(
"""
**This app is a prototype for testing purposes.**
The intended use is to explore AI-generated answers using publicly available project data from the German International Cooperation Society (GIZ) as of 23rd February 2025.
**Please do NOT enter sensitive or personal information.**
Note: The generated answers are AI-generated and may be wrong or misleading.
""")
###########################################
# Query input and budget slider (Change 9)
###########################################
var = st.text_input("Enter Question")
###########################################
# Load region lookup CSV
###########################################
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
###########################################
# Create the embeddings collection and save
###########################################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
###########################################
# Hybrid Search and Filters Setup
###########################################
client = get_client()
print(client.get_collections())
max_end_year = get_max_end_year(client, collection_name)
_, unique_sub_regions = get_regions(region_df)
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
country_set.update(two_digit_codes)
except json.JSONDecodeError:
pass
country_name_to_code = {}
iso_code_to_sub_region = {}
for code in country_set:
name = get_country_name(code, region_df)
sub_region_row = region_df[region_df['alpha-2'] == code]
sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
country_name_to_code[name] = code
iso_code_to_sub_region[code] = sub_region
return country_name_to_code, iso_code_to_sub_region
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys())
# Layout filter columns
col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1])
with col1:
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))
if region_filter == "All/Not allocated":
filtered_country_names = unique_country_names
else:
filtered_country_names = [name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter]
with col2:
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)
with col3:
current_year = datetime.now().year
default_start_year = current_year - 4
end_year_range = st.slider("Project End Year", min_value=2010, max_value=max_end_year, value=(default_start_year, max_end_year))
with col4:
crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name)
crs_filter = st.selectbox("CRS", crs_options)
with col5:
# Now use these values as the slider range:
min_budget = st.slider(
"Minimum Project Budget (Million €)",
min_value=min_budget_val,
max_value=max_budget_val,
value=min_budget_val)
# Checkbox for exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
###########################################
# Run the search and apply filters
###########################################
results = hybrid_search(client, var, collection_name, limit=500)
semantic_all = results[0]
lexical_all = results[1]
semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5]
lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5]
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
# Pass the budget filter (min_budget) into filter_results
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter, min_budget)
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range, crs_filter, min_budget)
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
def format_currency(value):
try:
return f"€{int(float(value)):,}"
except (ValueError, TypeError):
return value
###########################################
# Display Results (Lexical and Semantic)
###########################################
# --- Lexical Results Branch ---
if show_exact_matches:
st.write("Showing **Top 15 Lexical Search results**")
query_substring = var.strip().lower()
lexical_substring_filtered = [r for r in lexical_all if query_substring in r.payload["page_content"].lower()]
filtered_lexical = filter_results(lexical_substring_filtered, country_filter, region_filter, end_year_range, crs_filter, min_budget)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
if not filtered_lexical_no_dupe:
st.write('No exact matches, consider unchecking "Show only exact matches"')
else:
top_results = filtered_lexical_no_dupe[:10]
rag_answer = get_rag_answer(var, top_results)
# Use the query as heading; increase size and center it.
st.markdown(f"<h2 style='text-align:center; font-size:2.5em;'>Query: {var}</h2>", unsafe_allow_html=True)
st.write(rag_answer)
st.divider()
for res in top_results:
metadata = res.payload.get('metadata', {})
if "title" not in metadata:
metadata["title"] = compute_title(metadata)
# Highlight query matches in title (rendered with HTML)
title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
st.markdown(f"#### {title_html}", unsafe_allow_html=True)
# Build snippet from objectives and description
objectives = metadata.get("objectives", "")
desc_en = metadata.get("description.en", "").strip()
desc_de = metadata.get("description.de", "").strip()
description = desc_en if desc_en != "" else desc_de
full_snippet = f"{objectives} {description}"
words = full_snippet.split()
preview_word_count = 90
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True)
# Create two columns: left for "Show more" (remainder text) and right for additional details.
col_left, col_right = st.columns(2)
with col_left:
if remainder_text:
with st.expander("Show more"):
st.write(remainder_text)
with col_right:
# Format additional text with line breaks using <br>
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
total_project = metadata.get('total_project', "Unknown")
total_volume = metadata.get('total_volume', "Unknown")
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
try:
c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
except json.JSONDecodeError:
c_list = []
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
crs_key = metadata.get("crs_key", "").strip()
new_crs_value = lookup_crs_value(crs_key)
crs_combined = f"{crs_key}: {new_crs_value}" if crs_key else "Unknown"
client_name = metadata.get('client', 'Unknown Client')
contact = metadata.get("contact", "").strip()
additional_text = (
f"Commissioned by **{client_name}**<br>"
f"Projekt duration **{start_year_str}-{end_year_str}**<br>"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**<br>"
f"Country: **{', '.join(matched_countries)}**<br>"
f"Sector: **{crs_combined}**"
)
if contact and contact.lower() != "[email protected]":
additional_text += f"<br>Contact: **{contact}**"
st.markdown(additional_text, unsafe_allow_html=True)
st.divider()
# --- Semantic Results Branch ---
else:
if not filtered_semantic_no_dupe:
st.write("No relevant results found.")
else:
top_results = filtered_semantic_no_dupe[:10]
rag_answer = get_rag_answer(var, top_results)
st.markdown(f"<h2 style='text-align:center; font-size:2.5em;'>Query: {var}</h2>", unsafe_allow_html=True)
st.write(rag_answer)
st.divider()
st.write("Showing **Top 15 Semantic Search results**")
for res in top_results:
metadata = res.payload.get('metadata', {})
if "title" not in metadata:
metadata["title"] = compute_title(metadata)
st.markdown(f"#### {metadata['title']}")
objectives = metadata.get("objectives", "")
desc_en = metadata.get("description.en", "").strip()
desc_de = metadata.get("description.de", "").strip()
description = desc_en if desc_en != "" else desc_de
full_snippet = f"{objectives} {description}"
words = full_snippet.split()
preview_word_count = 90
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text)
col_left, col_right = st.columns(2)
with col_left:
if remainder_text:
with st.expander("Show more"):
st.write(remainder_text)
with col_right:
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
total_project = metadata.get('total_project', "Unknown")
total_volume = metadata.get('total_volume', "Unknown")
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
try:
c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
except json.JSONDecodeError:
c_list = []
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
crs_key = metadata.get("crs_key", "").strip()
new_crs_value = lookup_crs_value(crs_key)
crs_combined = f"{crs_key}: {new_crs_value}" if crs_key else "Unknown"
client_name = metadata.get('client', 'Unknown Client')
contact = metadata.get("contact", "").strip()
additional_text = (
f"Commissioned by **{client_name}**<br>"
f"Projekt duration **{start_year_str}-{end_year_str}**<br>"
f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**<br>"
f"Country: **{', '.join(matched_countries)}**<br>"
f"Sector: **{crs_combined}**"
)
if contact and contact.lower() != "[email protected]":
additional_text += f"<br>Contact: **{contact}**"
st.markdown(additional_text, unsafe_allow_html=True)
st.divider() |