File size: 22,513 Bytes
0130713
1bfcfd5
c2f0c5c
5c789bc
c258cbb
5a1352d
 
c567921
8fdd4c1
303502f
cb359de
9d9ace2
53d69f4
 
877e2df
 
 
303502f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08da20e
303502f
 
 
 
 
 
 
 
 
08da20e
303502f
7cb3d61
303502f
 
 
 
 
 
 
 
 
1bfcfd5
303502f
 
 
ddf3e12
 
 
 
 
 
 
 
1bfcfd5
303502f
 
 
 
 
1bfcfd5
94a0b34
303502f
 
035b045
 
 
 
1bfcfd5
 
 
 
f2efbb4
1bfcfd5
 
 
 
 
035b045
 
 
1bfcfd5
 
 
303502f
 
 
7b37585
540cd3a
 
7b37585
 
 
 
c16b369
303502f
 
 
7b37585
 
 
ddf3e12
 
 
 
 
 
 
 
 
 
 
 
 
 
303502f
 
 
 
 
 
 
 
 
 
7b37585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303502f
 
 
 
 
367acc4
 
 
 
303502f
 
 
 
 
 
367acc4
7b37585
367acc4
7b37585
367acc4
7b37585
 
 
303502f
 
 
f5dac9b
0130713
303502f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf3e12
 
e4b8dd5
303502f
 
 
88e2023
 
 
303502f
 
 
 
47177b9
 
7da963b
47177b9
7da963b
47177b9
c567921
7da963b
5170600
303502f
 
 
5a1352d
 
48484fb
8fdd4c1
 
d845358
8fdd4c1
d845358
 
 
 
 
 
043c4b1
 
d845358
 
043c4b1
8fdd4c1
043c4b1
 
8fdd4c1
 
043c4b1
8fdd4c1
 
d845358
88e2023
8fdd4c1
367acc4
d845358
303502f
ddf3e12
d845358
7b37585
367acc4
 
 
 
d845358
367acc4
77a1d81
 
7b37585
 
 
 
 
ddf3e12
 
 
 
 
 
 
 
d845358
367acc4
d845358
 
303502f
 
 
367acc4
d6bab54
 
367acc4
 
5ee7936
d6bab54
303502f
 
 
367acc4
d6bab54
 
a5158de
 
 
 
 
367acc4
303502f
 
 
 
d6bab54
303502f
d6bab54
7b37585
303502f
82254d1
d6bab54
 
 
e323495
5fc3c7d
303502f
 
5fc3c7d
 
 
67f6d38
7b37585
 
303502f
 
 
 
a5158de
303502f
 
 
5c4bc96
a5158de
e323495
47177b9
 
303502f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bab54
82254d1
303502f
d6bab54
 
 
d845358
e323495
1bfcfd5
303502f
1bfcfd5
 
303502f
1bfcfd5
77a1d81
7b37585
 
303502f
77a1d81
303502f
 
 
5c4bc96
77a1d81
e323495
47177b9
 
7b37585
303502f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import streamlit as st
import requests
import pandas as pd
import re
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
#from appStore.tfidf_extraction import extract_top_keywords  # TF-IDF part commented out
from torch import cuda
import json
from datetime import datetime

st.set_page_config(page_title="SEARCH IATI", layout='wide')


###########################################
# Helper functions for data processing
###########################################

# New helper: Truncate a text to a given (approximate) token count.
def truncate_to_tokens(text, max_tokens):
    tokens = text.split()  # simple approximation
    if len(tokens) > max_tokens:
        return " ".join(tokens[:max_tokens])
    return text

# Build a context string for a single result using title, objectives and description.
def build_context_for_result(res):
    metadata = res.payload.get('metadata', {})
    # Compute title if not already present.
    title = metadata.get("title", compute_title(metadata))
    objectives = metadata.get("objectives", "")
    # Use description.en if available; otherwise use description.de.
    desc_en = metadata.get("description.en", "").strip()
    desc_de = metadata.get("description.de", "").strip()
    description = desc_en if desc_en != "" else desc_de
    return f"{title}\n{objectives}\n{description}"

# Updated highlight: return HTML that makes the matched query red and bold.
def highlight_query(text, query):
    pattern = re.compile(re.escape(query), re.IGNORECASE)
    return pattern.sub(lambda m: f"<span style='color:red; font-weight:bold;'>{m.group(0)}</span>", text)

# Helper: Format project id (e.g., "201940485" -> "2019.4048.5")
def format_project_id(pid):
    s = str(pid)
    if len(s) > 5:
        return s[:4] + "." + s[4:-1] + "." + s[-1]
    return s

# Helper: Compute title from metadata using name.en (or name.de if empty)
def compute_title(metadata):
    name_en = metadata.get("name.en", "").strip()
    name_de = metadata.get("name.de", "").strip()
    base = name_en if name_en else name_de
    pid = metadata.get("id", "")
    if base and pid:
        return f"{base} [{format_project_id(pid)}]"
    return base or "No Title"

# Load CRS lookup CSV and define a lookup function.
crs_lookup = pd.read_csv("docStore/crs5_codes.csv")  # Assumes columns: "code" and "new_crs_value"
def lookup_crs_value(crs_key):
    row = crs_lookup[crs_lookup["code"] == crs_key]
    if not row.empty:
        # Convert to integer (drop decimals) and then to string.
        try:
            return str(int(float(row.iloc[0]["new_crs_value"])))
        except:
            return str(row.iloc[0]["new_crs_value"])
    return ""

###########################################
# RAG Answer function (Change 1 & 2 & 3)
###########################################
# ToDo move functions to utils and model specifications to config file!
# Configuration for the dedicated model
#https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingface.cloud
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://nwea79x4q1clc89l.eu-west-1.aws.endpoints.huggingface.cloud"
# Write access token from the settings
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]

def get_rag_answer(query, top_results):
    # Build context from each top result using title, objectives, and description.
    context = "\n\n".join([build_context_for_result(res) for res in top_results])
    # Truncate context to 11500 tokens (approximation)
    context = truncate_to_tokens(context, 11500)
    # Improved prompt with role instruction and formatting instruction.
    prompt = (
        "You are a project portfolio adviser at the development cooperation GIZ. "
        "Using the following context, answer the question in English precisely. "
        "Ensure that any project title mentioned in your answer is wrapped in ** (markdown bold). "
        "Only output the final answer below, without repeating the context or question.\n\n"
        f"Context:\n{context}\n\n"
        f"Question: {query}\n\n"
        "Answer:"
    )
    headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
    payload = {
        "inputs": prompt,
        "parameters": {"max_new_tokens": 220}
    }
    response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
    if response.status_code == 200:
        result = response.json()
        answer = result[0]["generated_text"]
        if "Answer:" in answer:
            answer = answer.split("Answer:")[-1].strip()
        return answer
    else:
        return f"Error in generating answer: {response.text}"

###########################################
# CRS Options using lookup (Change 7)
###########################################
@st.cache_data
def get_crs_options(_client, collection_name):
    results = hybrid_search(_client, "", collection_name)
    all_results = results[0] + results[1]
    crs_set = set()
    for res in all_results:
        metadata = res.payload.get('metadata', {})
        crs_key = metadata.get("crs_key", "").strip()
        if crs_key:
            new_value = lookup_crs_value(crs_key)
            crs_combined = f"{crs_key}: {new_value}"
            crs_set.add(crs_combined)
    return sorted(crs_set)

@st.cache_data
def load_project_data():
    # Load your full project DataFrame using your processing function.
    return process_giz_worldwide()

# Load the project data (cached)
project_data = load_project_data()

# Convert the 'total_project' column to numeric (dropping errors) and compute min and max.
# The budget is assumed to be in euros, so we convert to million euros.
budget_series = pd.to_numeric(project_data['total_project'], errors='coerce').dropna()
min_budget_val = float(budget_series.min() / 1e6)
max_budget_val = float(budget_series.max() / 1e6)

###########################################
# Revised filter_results with budget filtering (Change 7 & 9)
###########################################
def parse_budget(value):
    try:
        return float(value)
    except:
        return 0.0

def filter_results(results, country_filter, region_filter, end_year_range, crs_filter, budget_filter):
    filtered = []
    for r in results:
        metadata = r.payload.get('metadata', {})
        countries = metadata.get('countries', "[]")
        year_str = metadata.get('end_year')
        if year_str:
            extracted = extract_year(year_str)
            try:
                end_year_val = int(extracted) if extracted != "Unknown" else 0
            except ValueError:
                end_year_val = 0
        else:
            end_year_val = 0

        try:
            c_list = json.loads(countries.replace("'", '"'))
            c_list = [code.upper() for code in c_list if len(code) == 2]
        except json.JSONDecodeError:
            c_list = []

        selected_iso_code = country_name_mapping.get(country_filter, None)
        if region_filter != "All/Not allocated":
            countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
        else:
            countries_in_region = c_list

        crs_key = metadata.get("crs_key", "").strip()
        # Use lookup value instead of stored crs_value.
        new_crs_value = lookup_crs_value(crs_key)
        crs_combined = f"{crs_key}: {new_crs_value}" if crs_key else ""

        # Enforce CRS filter only if specified.
        if crs_filter != "All/Not allocated" and crs_combined:
            if crs_filter != crs_combined:
                continue

        # Budget filtering: parse total_project value.
        budget_value = parse_budget(metadata.get('total_project', "0"))
        # Only keep results with budget >= budget_filter (in million euros, so multiply by 1e6)
        if budget_value < (budget_filter * 1e6):
            continue

        year_ok = True if end_year_val == 0 else (end_year_range[0] <= end_year_val <= end_year_range[1])

        if ((country_filter == "All/Not allocated" or (selected_iso_code and selected_iso_code in c_list))
            and (region_filter == "All/Not allocated" or countries_in_region)
            and year_ok):
            filtered.append(r)
    return filtered

###########################################
# Get device
###########################################
device = 'cuda' if cuda.is_available() else 'cpu'

###########################################
# App heading and About button (Change 5 & 6)
###########################################
col_title, col_about = st.columns([8,2])
with col_title:
    st.markdown("<h1 style='text-align:center;'>GIZ Project Database (PROTOTYPE)</h1>", unsafe_allow_html=True)
with col_about:
    with st.expander("About"):
        st.markdown(
            """
            **This app is a prototype for testing purposes.**  
            The intended use is to explore AI-generated answers using publicly available project data from the German International Cooperation Society (GIZ) as of 23rd February 2025.  
            **Please do NOT enter sensitive or personal information.**  
            Note: The generated answers are AI-generated and may be wrong or misleading.
            """)
            
###########################################
# Query input and budget slider (Change 9)
###########################################
var = st.text_input("Enter Question")


###########################################
# Load region lookup CSV
###########################################
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)


###########################################
# Create the embeddings collection and save
###########################################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)

###########################################
# Hybrid Search and Filters Setup
###########################################
client = get_client()
print(client.get_collections())
max_end_year = get_max_end_year(client, collection_name)
_, unique_sub_regions = get_regions(region_df)

@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
    results = hybrid_search(_client, "", collection_name)
    country_set = set()
    for res in results[0] + results[1]:
        countries = res.payload.get('metadata', {}).get('countries', "[]")
        try:
            country_list = json.loads(countries.replace("'", '"'))
            two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
            country_set.update(two_digit_codes)
        except json.JSONDecodeError:
            pass
    country_name_to_code = {}
    iso_code_to_sub_region = {}
    for code in country_set:
        name = get_country_name(code, region_df)
        sub_region_row = region_df[region_df['alpha-2'] == code]
        sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
        country_name_to_code[name] = code
        iso_code_to_sub_region[code] = sub_region
    return country_name_to_code, iso_code_to_sub_region

client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys())

# Layout filter columns
col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1])
with col1:
    region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))
if region_filter == "All/Not allocated":
    filtered_country_names = unique_country_names
else:
    filtered_country_names = [name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter]
with col2:
    country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)
with col3:
    current_year = datetime.now().year
    default_start_year = current_year - 4
    end_year_range = st.slider("Project End Year", min_value=2010, max_value=max_end_year, value=(default_start_year, max_end_year))
with col4:
    crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name)
    crs_filter = st.selectbox("CRS", crs_options)
with col5:    
    # Now use these values as the slider range:
    min_budget = st.slider(
        "Minimum Project Budget (Million €)",
        min_value=min_budget_val,
        max_value=max_budget_val,
        value=min_budget_val)
    

# Checkbox for exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)

###########################################
# Run the search and apply filters
###########################################
results = hybrid_search(client, var, collection_name, limit=500)
semantic_all = results[0]
lexical_all = results[1]
semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5]
lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5]
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]

# Pass the budget filter (min_budget) into filter_results
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter, min_budget)
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range, crs_filter, min_budget)
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)

def format_currency(value):
    try:
        return f"€{int(float(value)):,}"
    except (ValueError, TypeError):
        return value

###########################################
# Display Results (Lexical and Semantic)
###########################################
# --- Lexical Results Branch ---
if show_exact_matches:
    st.write("Showing **Top 15 Lexical Search results**")
    query_substring = var.strip().lower()
    lexical_substring_filtered = [r for r in lexical_all if query_substring in r.payload["page_content"].lower()]
    filtered_lexical = filter_results(lexical_substring_filtered, country_filter, region_filter, end_year_range, crs_filter, min_budget)
    filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
    if not filtered_lexical_no_dupe:
        st.write('No exact matches, consider unchecking "Show only exact matches"')
    else:
        top_results = filtered_lexical_no_dupe[:10]
        rag_answer = get_rag_answer(var, top_results)
        # Use the query as heading; increase size and center it.
        st.markdown(f"<h2 style='text-align:center; font-size:2.5em;'>Query: {var}</h2>", unsafe_allow_html=True)
        st.write(rag_answer)
        st.divider()
        for res in top_results:
            metadata = res.payload.get('metadata', {})
            if "title" not in metadata:
                metadata["title"] = compute_title(metadata)
            # Highlight query matches in title (rendered with HTML)
            title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
            st.markdown(f"#### {title_html}", unsafe_allow_html=True)
            # Build snippet from objectives and description
            objectives = metadata.get("objectives", "")
            desc_en = metadata.get("description.en", "").strip()
            desc_de = metadata.get("description.de", "").strip()
            description = desc_en if desc_en != "" else desc_de
            full_snippet = f"{objectives} {description}"
            words = full_snippet.split()
            preview_word_count = 90
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True)
            # Create two columns: left for "Show more" (remainder text) and right for additional details.
            col_left, col_right = st.columns(2)
            with col_left:
                if remainder_text:
                    with st.expander("Show more"):
                        st.write(remainder_text)
            with col_right:
                # Format additional text with line breaks using <br>
                start_year = metadata.get('start_year', None)
                end_year = metadata.get('end_year', None)
                start_year_str = extract_year(start_year) if start_year else "Unknown"
                end_year_str = extract_year(end_year) if end_year else "Unknown"
                total_project = metadata.get('total_project', "Unknown")
                total_volume = metadata.get('total_volume', "Unknown")
                formatted_project_budget = format_currency(total_project)
                formatted_total_volume = format_currency(total_volume)
                try:
                    c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
                except json.JSONDecodeError:
                    c_list = []
                matched_countries = []
                for code in c_list:
                    if len(code) == 2:
                        resolved_name = get_country_name(code.upper(), region_df)
                        if resolved_name.upper() != code.upper():
                            matched_countries.append(resolved_name)
                crs_key = metadata.get("crs_key", "").strip()
                new_crs_value = lookup_crs_value(crs_key)
                crs_combined = f"{crs_key}: {new_crs_value}" if crs_key else "Unknown"
                client_name = metadata.get('client', 'Unknown Client')
                contact = metadata.get("contact", "").strip()
                additional_text = (
                    f"Commissioned by **{client_name}**<br>"
                    f"Projekt duration **{start_year_str}-{end_year_str}**<br>"
                    f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**<br>"
                    f"Country: **{', '.join(matched_countries)}**<br>"
                    f"Sector: **{crs_combined}**"
                )
                if contact and contact.lower() != "[email protected]":
                    additional_text += f"<br>Contact: **{contact}**"
                st.markdown(additional_text, unsafe_allow_html=True)
            st.divider()

# --- Semantic Results Branch ---
else:
    if not filtered_semantic_no_dupe:
        st.write("No relevant results found.")
    else:
        top_results = filtered_semantic_no_dupe[:10]
        rag_answer = get_rag_answer(var, top_results)
        st.markdown(f"<h2 style='text-align:center; font-size:2.5em;'>Query: {var}</h2>", unsafe_allow_html=True)
        st.write(rag_answer)
        st.divider()
        st.write("Showing **Top 15 Semantic Search results**")
        for res in top_results:
            metadata = res.payload.get('metadata', {})
            if "title" not in metadata:
                metadata["title"] = compute_title(metadata)
            st.markdown(f"#### {metadata['title']}")
            objectives = metadata.get("objectives", "")
            desc_en = metadata.get("description.en", "").strip()
            desc_de = metadata.get("description.de", "").strip()
            description = desc_en if desc_en != "" else desc_de
            full_snippet = f"{objectives} {description}"
            words = full_snippet.split()
            preview_word_count = 90
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            st.write(preview_text)
            col_left, col_right = st.columns(2)
            with col_left:
                if remainder_text:
                    with st.expander("Show more"):
                        st.write(remainder_text)
            with col_right:
                start_year = metadata.get('start_year', None)
                end_year = metadata.get('end_year', None)
                start_year_str = extract_year(start_year) if start_year else "Unknown"
                end_year_str = extract_year(end_year) if end_year else "Unknown"
                total_project = metadata.get('total_project', "Unknown")
                total_volume = metadata.get('total_volume', "Unknown")
                formatted_project_budget = format_currency(total_project)
                formatted_total_volume = format_currency(total_volume)
                try:
                    c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
                except json.JSONDecodeError:
                    c_list = []
                matched_countries = []
                for code in c_list:
                    if len(code) == 2:
                        resolved_name = get_country_name(code.upper(), region_df)
                        if resolved_name.upper() != code.upper():
                            matched_countries.append(resolved_name)
                crs_key = metadata.get("crs_key", "").strip()
                new_crs_value = lookup_crs_value(crs_key)
                crs_combined = f"{crs_key}: {new_crs_value}" if crs_key else "Unknown"
                client_name = metadata.get('client', 'Unknown Client')
                contact = metadata.get("contact", "").strip()
                additional_text = (
                    f"Commissioned by **{client_name}**<br>"
                    f"Projekt duration **{start_year_str}-{end_year_str}**<br>"
                    f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**<br>"
                    f"Country: **{', '.join(matched_countries)}**<br>"
                    f"Sector: **{crs_combined}**"
                )
                if contact and contact.lower() != "[email protected]":
                    additional_text += f"<br>Contact: **{contact}**"
                st.markdown(additional_text, unsafe_allow_html=True)
            st.divider()