GIGAParviz commited on
Commit
5d148bd
·
verified ·
1 Parent(s): e786169

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -125
app.py DELETED
@@ -1,125 +0,0 @@
1
- import gradio as gr
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import CharacterTextSplitter
4
- from langchain.embeddings import SentenceTransformerEmbeddings
5
- from langchain.vectorstores import FAISS
6
- from langchain.memory import ConversationBufferMemory
7
- from groq import Groq
8
- import requests
9
- from bs4 import BeautifulSoup
10
-
11
- client = Groq(api_key="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")
12
- embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
13
-
14
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
15
-
16
- def process_pdf_with_langchain(pdf_path):
17
-
18
- loader = PyPDFLoader(pdf_path)
19
- documents = loader.load()
20
- text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
21
- split_documents = text_splitter.split_documents(documents)
22
-
23
- vectorstore = FAISS.from_documents(split_documents, embedding_model)
24
- retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
25
- return retriever
26
-
27
- SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1"
28
-
29
- def scrape_google_search(query, num_results=3):
30
- params = {
31
- "q": query,
32
- "hl": "fa",
33
- "gl": "ir",
34
- "num": num_results,
35
- "api_key": SERPAPI_KEY,
36
- }
37
- search = GoogleSearch(params)
38
- results = search.get_dict()
39
-
40
- if "error" in results:
41
- return f"Error: {results['error']}"
42
-
43
- search_results = []
44
- for result in results.get("organic_results", []):
45
- title = result.get("title", "No Title")
46
- link = result.get("link", "No Link")
47
- search_results.append(f"{title}: {link}")
48
- return "\n".join(search_results) if search_results else "No results found"
49
-
50
- def generate_response(query, retriever=None, use_web_search=False):
51
-
52
- knowledge = ""
53
-
54
- if retriever:
55
- relevant_docs = retriever.get_relevant_documents(query)
56
- knowledge += "\n".join([doc.page_content for doc in relevant_docs])
57
-
58
- if use_web_search:
59
- web_results = scrape_google_search(query)
60
- knowledge += f"\n\nWeb Search Results:\n{web_results}"
61
-
62
- chat_history = memory.load_memory_variables({}).get("chat_history", "")
63
- context = (
64
- f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
65
- f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
66
- )
67
- if knowledge:
68
- context += f"\n\nRelevant Knowledge:\n{knowledge}"
69
- if chat_history:
70
- context += f"\n\nChat History:\n{chat_history}"
71
-
72
- context += f"\n\nYou: {query}\nParvizGPT:"
73
-
74
- chat_completion = client.chat.completions.create(
75
- messages=[{"role": "user", "content": context}],
76
- model="llama-3.3-70b-versatile",
77
- )
78
- response = chat_completion.choices[0].message.content.strip()
79
-
80
- memory.save_context({"input": query}, {"output": response})
81
- return response
82
-
83
- def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False):
84
- global retriever
85
- if pdf_file is not None:
86
- try:
87
- retriever = process_pdf_with_langchain(pdf_file.name)
88
- except Exception as e:
89
- return chat_box + [("Error", f"Error processing PDF: {e}")]
90
-
91
- response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
92
- chat_box.append(("You", user_message))
93
- chat_box.append(("ParvizGPT", response))
94
- return chat_box
95
-
96
- def clear_memory():
97
- memory.clear()
98
- return []
99
-
100
- retriever = None
101
- with gr.Blocks() as interface:
102
- gr.Markdown("## ParvizGPT")
103
- # with gr.Row():
104
- chat_box = gr.Chatbot(label="Chat History", value=[])
105
-
106
- # with gr.Row():
107
- user_message = gr.Textbox(
108
- label="Your Message",
109
- placeholder="Type your message here and press Enter...",
110
- lines=1,
111
- interactive=True,
112
- )
113
- enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
114
-
115
- # with gr.Row():
116
- clear_memory_btn = gr.Button("Clear Memory", interactive=True)
117
- # enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
118
- pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1)
119
-
120
- submit_btn = gr.Button("Submit")
121
- submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box)
122
- user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box)
123
- clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
124
-
125
- interface.launch()