|
|
|
|
|
import json |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from ultralytics.solutions.solutions import BaseSolution |
|
from ultralytics.utils import LOGGER |
|
from ultralytics.utils.checks import check_requirements |
|
from ultralytics.utils.plotting import Annotator |
|
|
|
|
|
class ParkingPtsSelection: |
|
""" |
|
A class for selecting and managing parking zone points on images using a Tkinter-based UI. |
|
|
|
This class provides functionality to upload an image, select points to define parking zones, and save the |
|
selected points to a JSON file. It uses Tkinter for the graphical user interface. |
|
|
|
Attributes: |
|
tk (module): The Tkinter module for GUI operations. |
|
filedialog (module): Tkinter's filedialog module for file selection operations. |
|
messagebox (module): Tkinter's messagebox module for displaying message boxes. |
|
master (tk.Tk): The main Tkinter window. |
|
canvas (tk.Canvas): The canvas widget for displaying the image and drawing bounding boxes. |
|
image (PIL.Image.Image): The uploaded image. |
|
canvas_image (ImageTk.PhotoImage): The image displayed on the canvas. |
|
rg_data (List[List[Tuple[int, int]]]): List of bounding boxes, each defined by 4 points. |
|
current_box (List[Tuple[int, int]]): Temporary storage for the points of the current bounding box. |
|
imgw (int): Original width of the uploaded image. |
|
imgh (int): Original height of the uploaded image. |
|
canvas_max_width (int): Maximum width of the canvas. |
|
canvas_max_height (int): Maximum height of the canvas. |
|
|
|
Methods: |
|
initialize_properties: Initializes the necessary properties. |
|
upload_image: Uploads an image, resizes it to fit the canvas, and displays it. |
|
on_canvas_click: Handles mouse clicks to add points for bounding boxes. |
|
draw_box: Draws a bounding box on the canvas. |
|
remove_last_bounding_box: Removes the last bounding box and redraws the canvas. |
|
redraw_canvas: Redraws the canvas with the image and all bounding boxes. |
|
save_to_json: Saves the bounding boxes to a JSON file. |
|
|
|
Examples: |
|
>>> parking_selector = ParkingPtsSelection() |
|
>>> # Use the GUI to upload an image, select parking zones, and save the data |
|
""" |
|
|
|
def __init__(self): |
|
"""Initializes the ParkingPtsSelection class, setting up UI and properties for parking zone point selection.""" |
|
check_requirements("tkinter") |
|
import tkinter as tk |
|
from tkinter import filedialog, messagebox |
|
|
|
self.tk, self.filedialog, self.messagebox = tk, filedialog, messagebox |
|
self.master = self.tk.Tk() |
|
self.master.title("Ultralytics Parking Zones Points Selector") |
|
self.master.resizable(False, False) |
|
|
|
self.canvas = self.tk.Canvas(self.master, bg="white") |
|
self.canvas.pack(side=self.tk.BOTTOM) |
|
|
|
self.image = None |
|
self.canvas_image = None |
|
self.canvas_max_width = None |
|
self.canvas_max_height = None |
|
self.rg_data = None |
|
self.current_box = None |
|
self.imgh = None |
|
self.imgw = None |
|
|
|
|
|
button_frame = self.tk.Frame(self.master) |
|
button_frame.pack(side=self.tk.TOP) |
|
|
|
for text, cmd in [ |
|
("Upload Image", self.upload_image), |
|
("Remove Last BBox", self.remove_last_bounding_box), |
|
("Save", self.save_to_json), |
|
]: |
|
self.tk.Button(button_frame, text=text, command=cmd).pack(side=self.tk.LEFT) |
|
|
|
self.initialize_properties() |
|
self.master.mainloop() |
|
|
|
def initialize_properties(self): |
|
"""Initialize properties for image, canvas, bounding boxes, and dimensions.""" |
|
self.image = self.canvas_image = None |
|
self.rg_data, self.current_box = [], [] |
|
self.imgw = self.imgh = 0 |
|
self.canvas_max_width, self.canvas_max_height = 1280, 720 |
|
|
|
def upload_image(self): |
|
"""Uploads and displays an image on the canvas, resizing it to fit within specified dimensions.""" |
|
from PIL import Image, ImageTk |
|
|
|
self.image = Image.open(self.filedialog.askopenfilename(filetypes=[("Image Files", "*.png *.jpg *.jpeg")])) |
|
if not self.image: |
|
return |
|
|
|
self.imgw, self.imgh = self.image.size |
|
aspect_ratio = self.imgw / self.imgh |
|
canvas_width = ( |
|
min(self.canvas_max_width, self.imgw) if aspect_ratio > 1 else int(self.canvas_max_height * aspect_ratio) |
|
) |
|
canvas_height = ( |
|
min(self.canvas_max_height, self.imgh) if aspect_ratio <= 1 else int(canvas_width / aspect_ratio) |
|
) |
|
|
|
self.canvas.config(width=canvas_width, height=canvas_height) |
|
self.canvas_image = ImageTk.PhotoImage(self.image.resize((canvas_width, canvas_height))) |
|
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image) |
|
self.canvas.bind("<Button-1>", self.on_canvas_click) |
|
|
|
self.rg_data.clear(), self.current_box.clear() |
|
|
|
def on_canvas_click(self, event): |
|
"""Handles mouse clicks to add points for bounding boxes on the canvas.""" |
|
self.current_box.append((event.x, event.y)) |
|
self.canvas.create_oval(event.x - 3, event.y - 3, event.x + 3, event.y + 3, fill="red") |
|
if len(self.current_box) == 4: |
|
self.rg_data.append(self.current_box.copy()) |
|
self.draw_box(self.current_box) |
|
self.current_box.clear() |
|
|
|
def draw_box(self, box): |
|
"""Draws a bounding box on the canvas using the provided coordinates.""" |
|
for i in range(4): |
|
self.canvas.create_line(box[i], box[(i + 1) % 4], fill="blue", width=2) |
|
|
|
def remove_last_bounding_box(self): |
|
"""Removes the last bounding box from the list and redraws the canvas.""" |
|
if not self.rg_data: |
|
self.messagebox.showwarning("Warning", "No bounding boxes to remove.") |
|
return |
|
self.rg_data.pop() |
|
self.redraw_canvas() |
|
|
|
def redraw_canvas(self): |
|
"""Redraws the canvas with the image and all bounding boxes.""" |
|
self.canvas.delete("all") |
|
self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image) |
|
for box in self.rg_data: |
|
self.draw_box(box) |
|
|
|
def save_to_json(self): |
|
"""Saves the selected parking zone points to a JSON file with scaled coordinates.""" |
|
scale_w, scale_h = self.imgw / self.canvas.winfo_width(), self.imgh / self.canvas.winfo_height() |
|
data = [{"points": [(int(x * scale_w), int(y * scale_h)) for x, y in box]} for box in self.rg_data] |
|
|
|
from io import StringIO |
|
|
|
write_buffer = StringIO() |
|
json.dump(data, write_buffer, indent=4) |
|
with open("bounding_boxes.json", "w", encoding="utf-8") as f: |
|
f.write(write_buffer.getvalue()) |
|
self.messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json") |
|
|
|
|
|
class ParkingManagement(BaseSolution): |
|
""" |
|
Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization. |
|
|
|
This class extends BaseSolution to provide functionality for parking lot management, including detection of |
|
occupied spaces, visualization of parking regions, and display of occupancy statistics. |
|
|
|
Attributes: |
|
json_file (str): Path to the JSON file containing parking region details. |
|
json (List[Dict]): Loaded JSON data containing parking region information. |
|
pr_info (Dict[str, int]): Dictionary storing parking information (Occupancy and Available spaces). |
|
arc (Tuple[int, int, int]): RGB color tuple for available region visualization. |
|
occ (Tuple[int, int, int]): RGB color tuple for occupied region visualization. |
|
dc (Tuple[int, int, int]): RGB color tuple for centroid visualization of detected objects. |
|
|
|
Methods: |
|
process_data: Processes model data for parking lot management and visualization. |
|
|
|
Examples: |
|
>>> from ultralytics.solutions import ParkingManagement |
|
>>> parking_manager = ParkingManagement(model="yolov8n.pt", json_file="parking_regions.json") |
|
>>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}") |
|
>>> print(f"Available spaces: {parking_manager.pr_info['Available']}") |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
"""Initializes the parking management system with a YOLO model and visualization settings.""" |
|
super().__init__(**kwargs) |
|
|
|
self.json_file = self.CFG["json_file"] |
|
if self.json_file is None: |
|
LOGGER.warning("❌ json_file argument missing. Parking region details required.") |
|
raise ValueError("❌ Json file path can not be empty") |
|
|
|
with open(self.json_file) as f: |
|
self.json = json.load(f) |
|
|
|
self.pr_info = {"Occupancy": 0, "Available": 0} |
|
|
|
self.arc = (0, 0, 255) |
|
self.occ = (0, 255, 0) |
|
self.dc = (255, 0, 189) |
|
|
|
def process_data(self, im0): |
|
""" |
|
Processes the model data for parking lot management. |
|
|
|
This function analyzes the input image, extracts tracks, and determines the occupancy status of parking |
|
regions defined in the JSON file. It annotates the image with occupied and available parking spots, |
|
and updates the parking information. |
|
|
|
Args: |
|
im0 (np.ndarray): The input inference image. |
|
|
|
Examples: |
|
>>> parking_manager = ParkingManagement(json_file="parking_regions.json") |
|
>>> image = cv2.imread("parking_lot.jpg") |
|
>>> parking_manager.process_data(image) |
|
""" |
|
self.extract_tracks(im0) |
|
es, fs = len(self.json), 0 |
|
annotator = Annotator(im0, self.line_width) |
|
|
|
for region in self.json: |
|
|
|
pts_array = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2)) |
|
rg_occupied = False |
|
for box, cls in zip(self.boxes, self.clss): |
|
xc, yc = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2) |
|
dist = cv2.pointPolygonTest(pts_array, (xc, yc), False) |
|
if dist >= 0: |
|
|
|
annotator.display_objects_labels( |
|
im0, self.model.names[int(cls)], (104, 31, 17), (255, 255, 255), xc, yc, 10 |
|
) |
|
rg_occupied = True |
|
break |
|
fs, es = (fs + 1, es - 1) if rg_occupied else (fs, es) |
|
|
|
cv2.polylines(im0, [pts_array], isClosed=True, color=self.occ if rg_occupied else self.arc, thickness=2) |
|
|
|
self.pr_info["Occupancy"], self.pr_info["Available"] = fs, es |
|
|
|
annotator.display_analytics(im0, self.pr_info, (104, 31, 17), (255, 255, 255), 10) |
|
self.display_output(im0) |
|
return im0 |
|
|