|
|
|
"""Block modules.""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ultralytics.utils.torch_utils import fuse_conv_and_bn |
|
|
|
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad |
|
from .transformer import TransformerBlock |
|
|
|
__all__ = ( |
|
"DFL", |
|
"HGBlock", |
|
"HGStem", |
|
"SPP", |
|
"SPPF", |
|
"C1", |
|
"C2", |
|
"C3", |
|
"C2f", |
|
"C2fAttn", |
|
"ImagePoolingAttn", |
|
"ContrastiveHead", |
|
"BNContrastiveHead", |
|
"C3x", |
|
"C3TR", |
|
"C3Ghost", |
|
"GhostBottleneck", |
|
"Bottleneck", |
|
"BottleneckCSP", |
|
"Proto", |
|
"RepC3", |
|
"ResNetLayer", |
|
"RepNCSPELAN4", |
|
"ELAN1", |
|
"ADown", |
|
"AConv", |
|
"SPPELAN", |
|
"CBFuse", |
|
"CBLinear", |
|
"C3k2", |
|
"C2fPSA", |
|
"C2PSA", |
|
"RepVGGDW", |
|
"CIB", |
|
"C2fCIB", |
|
"Attention", |
|
"PSA", |
|
"SCDown", |
|
"TorchVision", |
|
) |
|
|
|
|
|
class DFL(nn.Module): |
|
""" |
|
Integral module of Distribution Focal Loss (DFL). |
|
|
|
Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 |
|
""" |
|
|
|
def __init__(self, c1=16): |
|
"""Initialize a convolutional layer with a given number of input channels.""" |
|
super().__init__() |
|
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False) |
|
x = torch.arange(c1, dtype=torch.float) |
|
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1)) |
|
self.c1 = c1 |
|
|
|
def forward(self, x): |
|
"""Applies a transformer layer on input tensor 'x' and returns a tensor.""" |
|
b, _, a = x.shape |
|
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a) |
|
|
|
|
|
|
|
class Proto(nn.Module): |
|
"""YOLOv8 mask Proto module for segmentation models.""" |
|
|
|
def __init__(self, c1, c_=256, c2=32): |
|
""" |
|
Initializes the YOLOv8 mask Proto module with specified number of protos and masks. |
|
|
|
Input arguments are ch_in, number of protos, number of masks. |
|
""" |
|
super().__init__() |
|
self.cv1 = Conv(c1, c_, k=3) |
|
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) |
|
self.cv2 = Conv(c_, c_, k=3) |
|
self.cv3 = Conv(c_, c2) |
|
|
|
def forward(self, x): |
|
"""Performs a forward pass through layers using an upsampled input image.""" |
|
return self.cv3(self.cv2(self.upsample(self.cv1(x)))) |
|
|
|
|
|
class HGStem(nn.Module): |
|
""" |
|
StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d. |
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py |
|
""" |
|
|
|
def __init__(self, c1, cm, c2): |
|
"""Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling.""" |
|
super().__init__() |
|
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU()) |
|
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU()) |
|
self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU()) |
|
self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU()) |
|
self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU()) |
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True) |
|
|
|
def forward(self, x): |
|
"""Forward pass of a PPHGNetV2 backbone layer.""" |
|
x = self.stem1(x) |
|
x = F.pad(x, [0, 1, 0, 1]) |
|
x2 = self.stem2a(x) |
|
x2 = F.pad(x2, [0, 1, 0, 1]) |
|
x2 = self.stem2b(x2) |
|
x1 = self.pool(x) |
|
x = torch.cat([x1, x2], dim=1) |
|
x = self.stem3(x) |
|
x = self.stem4(x) |
|
return x |
|
|
|
|
|
class HGBlock(nn.Module): |
|
""" |
|
HG_Block of PPHGNetV2 with 2 convolutions and LightConv. |
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py |
|
""" |
|
|
|
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()): |
|
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels.""" |
|
super().__init__() |
|
block = LightConv if lightconv else Conv |
|
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n)) |
|
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) |
|
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def forward(self, x): |
|
"""Forward pass of a PPHGNetV2 backbone layer.""" |
|
y = [x] |
|
y.extend(m(y[-1]) for m in self.m) |
|
y = self.ec(self.sc(torch.cat(y, 1))) |
|
return y + x if self.add else y |
|
|
|
|
|
class SPP(nn.Module): |
|
"""Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729.""" |
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13)): |
|
"""Initialize the SPP layer with input/output channels and pooling kernel sizes.""" |
|
super().__init__() |
|
c_ = c1 // 2 |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) |
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) |
|
|
|
def forward(self, x): |
|
"""Forward pass of the SPP layer, performing spatial pyramid pooling.""" |
|
x = self.cv1(x) |
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) |
|
|
|
|
|
class SPPF(nn.Module): |
|
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher.""" |
|
|
|
def __init__(self, c1, c2, k=5): |
|
""" |
|
Initializes the SPPF layer with given input/output channels and kernel size. |
|
|
|
This module is equivalent to SPP(k=(5, 9, 13)). |
|
""" |
|
super().__init__() |
|
c_ = c1 // 2 |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c_ * 4, c2, 1, 1) |
|
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) |
|
|
|
def forward(self, x): |
|
"""Forward pass through Ghost Convolution block.""" |
|
y = [self.cv1(x)] |
|
y.extend(self.m(y[-1]) for _ in range(3)) |
|
return self.cv2(torch.cat(y, 1)) |
|
|
|
|
|
class C1(nn.Module): |
|
"""CSP Bottleneck with 1 convolution.""" |
|
|
|
def __init__(self, c1, c2, n=1): |
|
"""Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number.""" |
|
super().__init__() |
|
self.cv1 = Conv(c1, c2, 1, 1) |
|
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
"""Applies cross-convolutions to input in the C3 module.""" |
|
y = self.cv1(x) |
|
return self.m(y) + y |
|
|
|
|
|
class C2(nn.Module): |
|
"""CSP Bottleneck with 2 convolutions.""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes a CSP Bottleneck with 2 convolutions and optional shortcut connection.""" |
|
super().__init__() |
|
self.c = int(c2 * e) |
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1) |
|
self.cv2 = Conv(2 * self.c, c2, 1) |
|
|
|
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
"""Forward pass through the CSP bottleneck with 2 convolutions.""" |
|
a, b = self.cv1(x).chunk(2, 1) |
|
return self.cv2(torch.cat((self.m(a), b), 1)) |
|
|
|
|
|
class C2f(nn.Module): |
|
"""Faster Implementation of CSP Bottleneck with 2 convolutions.""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): |
|
"""Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing.""" |
|
super().__init__() |
|
self.c = int(c2 * e) |
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1) |
|
self.cv2 = Conv((2 + n) * self.c, c2, 1) |
|
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) |
|
|
|
def forward(self, x): |
|
"""Forward pass through C2f layer.""" |
|
y = list(self.cv1(x).chunk(2, 1)) |
|
y.extend(m(y[-1]) for m in self.m) |
|
return self.cv2(torch.cat(y, 1)) |
|
|
|
def forward_split(self, x): |
|
"""Forward pass using split() instead of chunk().""" |
|
y = self.cv1(x).split((self.c, self.c), 1) |
|
y = [y[0], y[1]] |
|
y.extend(m(y[-1]) for m in self.m) |
|
return self.cv2(torch.cat(y, 1)) |
|
|
|
|
|
class C3(nn.Module): |
|
"""CSP Bottleneck with 3 convolutions.""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values.""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
self.cv3 = Conv(2 * c_, c2, 1) |
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
"""Forward pass through the CSP bottleneck with 2 convolutions.""" |
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) |
|
|
|
|
|
class C3x(C3): |
|
"""C3 module with cross-convolutions.""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initialize C3TR instance and set default parameters.""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
self.c_ = int(c2 * e) |
|
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n))) |
|
|
|
|
|
class RepC3(nn.Module): |
|
"""Rep C3.""" |
|
|
|
def __init__(self, c1, c2, n=3, e=1.0): |
|
"""Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number.""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)]) |
|
self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity() |
|
|
|
def forward(self, x): |
|
"""Forward pass of RT-DETR neck layer.""" |
|
return self.cv3(self.m(self.cv1(x)) + self.cv2(x)) |
|
|
|
|
|
class C3TR(C3): |
|
"""C3 module with TransformerBlock().""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initialize C3Ghost module with GhostBottleneck().""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = TransformerBlock(c_, c_, 4, n) |
|
|
|
|
|
class C3Ghost(C3): |
|
"""C3 module with GhostBottleneck().""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling.""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) |
|
|
|
|
|
class GhostBottleneck(nn.Module): |
|
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet.""" |
|
|
|
def __init__(self, c1, c2, k=3, s=1): |
|
"""Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride.""" |
|
super().__init__() |
|
c_ = c2 // 2 |
|
self.conv = nn.Sequential( |
|
GhostConv(c1, c_, 1, 1), |
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), |
|
GhostConv(c_, c2, 1, 1, act=False), |
|
) |
|
self.shortcut = ( |
|
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() |
|
) |
|
|
|
def forward(self, x): |
|
"""Applies skip connection and concatenation to input tensor.""" |
|
return self.conv(x) + self.shortcut(x) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
"""Standard bottleneck.""" |
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): |
|
"""Initializes a standard bottleneck module with optional shortcut connection and configurable parameters.""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, k[0], 1) |
|
self.cv2 = Conv(c_, c2, k[1], 1, g=g) |
|
self.add = shortcut and c1 == c2 |
|
|
|
def forward(self, x): |
|
"""Applies the YOLO FPN to input data.""" |
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) |
|
|
|
|
|
class BottleneckCSP(nn.Module): |
|
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks.""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion.""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) |
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) |
|
self.cv4 = Conv(2 * c_, c2, 1, 1) |
|
self.bn = nn.BatchNorm2d(2 * c_) |
|
self.act = nn.SiLU() |
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
"""Applies a CSP bottleneck with 3 convolutions.""" |
|
y1 = self.cv3(self.m(self.cv1(x))) |
|
y2 = self.cv2(x) |
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) |
|
|
|
|
|
class ResNetBlock(nn.Module): |
|
"""ResNet block with standard convolution layers.""" |
|
|
|
def __init__(self, c1, c2, s=1, e=4): |
|
"""Initialize convolution with given parameters.""" |
|
super().__init__() |
|
c3 = e * c2 |
|
self.cv1 = Conv(c1, c2, k=1, s=1, act=True) |
|
self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True) |
|
self.cv3 = Conv(c2, c3, k=1, act=False) |
|
self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity() |
|
|
|
def forward(self, x): |
|
"""Forward pass through the ResNet block.""" |
|
return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x)) |
|
|
|
|
|
class ResNetLayer(nn.Module): |
|
"""ResNet layer with multiple ResNet blocks.""" |
|
|
|
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4): |
|
"""Initializes the ResNetLayer given arguments.""" |
|
super().__init__() |
|
self.is_first = is_first |
|
|
|
if self.is_first: |
|
self.layer = nn.Sequential( |
|
Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
) |
|
else: |
|
blocks = [ResNetBlock(c1, c2, s, e=e)] |
|
blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)]) |
|
self.layer = nn.Sequential(*blocks) |
|
|
|
def forward(self, x): |
|
"""Forward pass through the ResNet layer.""" |
|
return self.layer(x) |
|
|
|
|
|
class MaxSigmoidAttnBlock(nn.Module): |
|
"""Max Sigmoid attention block.""" |
|
|
|
def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False): |
|
"""Initializes MaxSigmoidAttnBlock with specified arguments.""" |
|
super().__init__() |
|
self.nh = nh |
|
self.hc = c2 // nh |
|
self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None |
|
self.gl = nn.Linear(gc, ec) |
|
self.bias = nn.Parameter(torch.zeros(nh)) |
|
self.proj_conv = Conv(c1, c2, k=3, s=1, act=False) |
|
self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0 |
|
|
|
def forward(self, x, guide): |
|
"""Forward process.""" |
|
bs, _, h, w = x.shape |
|
|
|
guide = self.gl(guide) |
|
guide = guide.view(bs, -1, self.nh, self.hc) |
|
embed = self.ec(x) if self.ec is not None else x |
|
embed = embed.view(bs, self.nh, self.hc, h, w) |
|
|
|
aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide) |
|
aw = aw.max(dim=-1)[0] |
|
aw = aw / (self.hc**0.5) |
|
aw = aw + self.bias[None, :, None, None] |
|
aw = aw.sigmoid() * self.scale |
|
|
|
x = self.proj_conv(x) |
|
x = x.view(bs, self.nh, -1, h, w) |
|
x = x * aw.unsqueeze(2) |
|
return x.view(bs, -1, h, w) |
|
|
|
|
|
class C2fAttn(nn.Module): |
|
"""C2f module with an additional attn module.""" |
|
|
|
def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5): |
|
"""Initializes C2f module with attention mechanism for enhanced feature extraction and processing.""" |
|
super().__init__() |
|
self.c = int(c2 * e) |
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1) |
|
self.cv2 = Conv((3 + n) * self.c, c2, 1) |
|
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) |
|
self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh) |
|
|
|
def forward(self, x, guide): |
|
"""Forward pass through C2f layer.""" |
|
y = list(self.cv1(x).chunk(2, 1)) |
|
y.extend(m(y[-1]) for m in self.m) |
|
y.append(self.attn(y[-1], guide)) |
|
return self.cv2(torch.cat(y, 1)) |
|
|
|
def forward_split(self, x, guide): |
|
"""Forward pass using split() instead of chunk().""" |
|
y = list(self.cv1(x).split((self.c, self.c), 1)) |
|
y.extend(m(y[-1]) for m in self.m) |
|
y.append(self.attn(y[-1], guide)) |
|
return self.cv2(torch.cat(y, 1)) |
|
|
|
|
|
class ImagePoolingAttn(nn.Module): |
|
"""ImagePoolingAttn: Enhance the text embeddings with image-aware information.""" |
|
|
|
def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False): |
|
"""Initializes ImagePoolingAttn with specified arguments.""" |
|
super().__init__() |
|
|
|
nf = len(ch) |
|
self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec)) |
|
self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec)) |
|
self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec)) |
|
self.proj = nn.Linear(ec, ct) |
|
self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0 |
|
self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch]) |
|
self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)]) |
|
self.ec = ec |
|
self.nh = nh |
|
self.nf = nf |
|
self.hc = ec // nh |
|
self.k = k |
|
|
|
def forward(self, x, text): |
|
"""Executes attention mechanism on input tensor x and guide tensor.""" |
|
bs = x[0].shape[0] |
|
assert len(x) == self.nf |
|
num_patches = self.k**2 |
|
x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)] |
|
x = torch.cat(x, dim=-1).transpose(1, 2) |
|
q = self.query(text) |
|
k = self.key(x) |
|
v = self.value(x) |
|
|
|
|
|
q = q.reshape(bs, -1, self.nh, self.hc) |
|
k = k.reshape(bs, -1, self.nh, self.hc) |
|
v = v.reshape(bs, -1, self.nh, self.hc) |
|
|
|
aw = torch.einsum("bnmc,bkmc->bmnk", q, k) |
|
aw = aw / (self.hc**0.5) |
|
aw = F.softmax(aw, dim=-1) |
|
|
|
x = torch.einsum("bmnk,bkmc->bnmc", aw, v) |
|
x = self.proj(x.reshape(bs, -1, self.ec)) |
|
return x * self.scale + text |
|
|
|
|
|
class ContrastiveHead(nn.Module): |
|
"""Implements contrastive learning head for region-text similarity in vision-language models.""" |
|
|
|
def __init__(self): |
|
"""Initializes ContrastiveHead with specified region-text similarity parameters.""" |
|
super().__init__() |
|
|
|
self.bias = nn.Parameter(torch.tensor([-10.0])) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log()) |
|
|
|
def forward(self, x, w): |
|
"""Forward function of contrastive learning.""" |
|
x = F.normalize(x, dim=1, p=2) |
|
w = F.normalize(w, dim=-1, p=2) |
|
x = torch.einsum("bchw,bkc->bkhw", x, w) |
|
return x * self.logit_scale.exp() + self.bias |
|
|
|
|
|
class BNContrastiveHead(nn.Module): |
|
""" |
|
Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization. |
|
|
|
Args: |
|
embed_dims (int): Embed dimensions of text and image features. |
|
""" |
|
|
|
def __init__(self, embed_dims: int): |
|
"""Initialize ContrastiveHead with region-text similarity parameters.""" |
|
super().__init__() |
|
self.norm = nn.BatchNorm2d(embed_dims) |
|
|
|
self.bias = nn.Parameter(torch.tensor([-10.0])) |
|
|
|
self.logit_scale = nn.Parameter(-1.0 * torch.ones([])) |
|
|
|
def forward(self, x, w): |
|
"""Forward function of contrastive learning.""" |
|
x = self.norm(x) |
|
w = F.normalize(w, dim=-1, p=2) |
|
x = torch.einsum("bchw,bkc->bkhw", x, w) |
|
return x * self.logit_scale.exp() + self.bias |
|
|
|
|
|
class RepBottleneck(Bottleneck): |
|
"""Rep bottleneck.""" |
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): |
|
"""Initializes a RepBottleneck module with customizable in/out channels, shortcuts, groups and expansion.""" |
|
super().__init__(c1, c2, shortcut, g, k, e) |
|
c_ = int(c2 * e) |
|
self.cv1 = RepConv(c1, c_, k[0], 1) |
|
|
|
|
|
class RepCSP(C3): |
|
"""Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction.""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): |
|
"""Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio.""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) |
|
|
|
|
|
class RepNCSPELAN4(nn.Module): |
|
"""CSP-ELAN.""" |
|
|
|
def __init__(self, c1, c2, c3, c4, n=1): |
|
"""Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions.""" |
|
super().__init__() |
|
self.c = c3 // 2 |
|
self.cv1 = Conv(c1, c3, 1, 1) |
|
self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1)) |
|
self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1)) |
|
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1) |
|
|
|
def forward(self, x): |
|
"""Forward pass through RepNCSPELAN4 layer.""" |
|
y = list(self.cv1(x).chunk(2, 1)) |
|
y.extend((m(y[-1])) for m in [self.cv2, self.cv3]) |
|
return self.cv4(torch.cat(y, 1)) |
|
|
|
def forward_split(self, x): |
|
"""Forward pass using split() instead of chunk().""" |
|
y = list(self.cv1(x).split((self.c, self.c), 1)) |
|
y.extend(m(y[-1]) for m in [self.cv2, self.cv3]) |
|
return self.cv4(torch.cat(y, 1)) |
|
|
|
|
|
class ELAN1(RepNCSPELAN4): |
|
"""ELAN1 module with 4 convolutions.""" |
|
|
|
def __init__(self, c1, c2, c3, c4): |
|
"""Initializes ELAN1 layer with specified channel sizes.""" |
|
super().__init__(c1, c2, c3, c4) |
|
self.c = c3 // 2 |
|
self.cv1 = Conv(c1, c3, 1, 1) |
|
self.cv2 = Conv(c3 // 2, c4, 3, 1) |
|
self.cv3 = Conv(c4, c4, 3, 1) |
|
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1) |
|
|
|
|
|
class AConv(nn.Module): |
|
"""AConv.""" |
|
|
|
def __init__(self, c1, c2): |
|
"""Initializes AConv module with convolution layers.""" |
|
super().__init__() |
|
self.cv1 = Conv(c1, c2, 3, 2, 1) |
|
|
|
def forward(self, x): |
|
"""Forward pass through AConv layer.""" |
|
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True) |
|
return self.cv1(x) |
|
|
|
|
|
class ADown(nn.Module): |
|
"""ADown.""" |
|
|
|
def __init__(self, c1, c2): |
|
"""Initializes ADown module with convolution layers to downsample input from channels c1 to c2.""" |
|
super().__init__() |
|
self.c = c2 // 2 |
|
self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1) |
|
self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
"""Forward pass through ADown layer.""" |
|
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True) |
|
x1, x2 = x.chunk(2, 1) |
|
x1 = self.cv1(x1) |
|
x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1) |
|
x2 = self.cv2(x2) |
|
return torch.cat((x1, x2), 1) |
|
|
|
|
|
class SPPELAN(nn.Module): |
|
"""SPP-ELAN.""" |
|
|
|
def __init__(self, c1, c2, c3, k=5): |
|
"""Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling.""" |
|
super().__init__() |
|
self.c = c3 |
|
self.cv1 = Conv(c1, c3, 1, 1) |
|
self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) |
|
self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) |
|
self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) |
|
self.cv5 = Conv(4 * c3, c2, 1, 1) |
|
|
|
def forward(self, x): |
|
"""Forward pass through SPPELAN layer.""" |
|
y = [self.cv1(x)] |
|
y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4]) |
|
return self.cv5(torch.cat(y, 1)) |
|
|
|
|
|
class CBLinear(nn.Module): |
|
"""CBLinear.""" |
|
|
|
def __init__(self, c1, c2s, k=1, s=1, p=None, g=1): |
|
"""Initializes the CBLinear module, passing inputs unchanged.""" |
|
super().__init__() |
|
self.c2s = c2s |
|
self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True) |
|
|
|
def forward(self, x): |
|
"""Forward pass through CBLinear layer.""" |
|
return self.conv(x).split(self.c2s, dim=1) |
|
|
|
|
|
class CBFuse(nn.Module): |
|
"""CBFuse.""" |
|
|
|
def __init__(self, idx): |
|
"""Initializes CBFuse module with layer index for selective feature fusion.""" |
|
super().__init__() |
|
self.idx = idx |
|
|
|
def forward(self, xs): |
|
"""Forward pass through CBFuse layer.""" |
|
target_size = xs[-1].shape[2:] |
|
res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])] |
|
return torch.sum(torch.stack(res + xs[-1:]), dim=0) |
|
|
|
|
|
class C3f(nn.Module): |
|
"""Faster Implementation of CSP Bottleneck with 2 convolutions.""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): |
|
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups, |
|
expansion. |
|
""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
self.cv3 = Conv((2 + n) * c_, c2, 1) |
|
self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) |
|
|
|
def forward(self, x): |
|
"""Forward pass through C2f layer.""" |
|
y = [self.cv2(x), self.cv1(x)] |
|
y.extend(m(y[-1]) for m in self.m) |
|
return self.cv3(torch.cat(y, 1)) |
|
|
|
|
|
class C3k2(C2f): |
|
"""Faster Implementation of CSP Bottleneck with 2 convolutions.""" |
|
|
|
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True): |
|
"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks.""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
self.m = nn.ModuleList( |
|
C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n) |
|
) |
|
|
|
|
|
class C3k(C3): |
|
"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3): |
|
"""Initializes the C3k module with specified channels, number of layers, and configurations.""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
c_ = int(c2 * e) |
|
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) |
|
|
|
|
|
class RepVGGDW(torch.nn.Module): |
|
"""RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture.""" |
|
|
|
def __init__(self, ed) -> None: |
|
"""Initializes RepVGGDW with depthwise separable convolutional layers for efficient processing.""" |
|
super().__init__() |
|
self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False) |
|
self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False) |
|
self.dim = ed |
|
self.act = nn.SiLU() |
|
|
|
def forward(self, x): |
|
""" |
|
Performs a forward pass of the RepVGGDW block. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
(torch.Tensor): Output tensor after applying the depth wise separable convolution. |
|
""" |
|
return self.act(self.conv(x) + self.conv1(x)) |
|
|
|
def forward_fuse(self, x): |
|
""" |
|
Performs a forward pass of the RepVGGDW block without fusing the convolutions. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
(torch.Tensor): Output tensor after applying the depth wise separable convolution. |
|
""" |
|
return self.act(self.conv(x)) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
""" |
|
Fuses the convolutional layers in the RepVGGDW block. |
|
|
|
This method fuses the convolutional layers and updates the weights and biases accordingly. |
|
""" |
|
conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn) |
|
conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn) |
|
|
|
conv_w = conv.weight |
|
conv_b = conv.bias |
|
conv1_w = conv1.weight |
|
conv1_b = conv1.bias |
|
|
|
conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2]) |
|
|
|
final_conv_w = conv_w + conv1_w |
|
final_conv_b = conv_b + conv1_b |
|
|
|
conv.weight.data.copy_(final_conv_w) |
|
conv.bias.data.copy_(final_conv_b) |
|
|
|
self.conv = conv |
|
del self.conv1 |
|
|
|
|
|
class CIB(nn.Module): |
|
""" |
|
Conditional Identity Block (CIB) module. |
|
|
|
Args: |
|
c1 (int): Number of input channels. |
|
c2 (int): Number of output channels. |
|
shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True. |
|
e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5. |
|
lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False. |
|
""" |
|
|
|
def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False): |
|
"""Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer.""" |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = nn.Sequential( |
|
Conv(c1, c1, 3, g=c1), |
|
Conv(c1, 2 * c_, 1), |
|
RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_), |
|
Conv(2 * c_, c2, 1), |
|
Conv(c2, c2, 3, g=c2), |
|
) |
|
|
|
self.add = shortcut and c1 == c2 |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the CIB module. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
(torch.Tensor): Output tensor. |
|
""" |
|
return x + self.cv1(x) if self.add else self.cv1(x) |
|
|
|
|
|
class C2fCIB(C2f): |
|
""" |
|
C2fCIB class represents a convolutional block with C2f and CIB modules. |
|
|
|
Args: |
|
c1 (int): Number of input channels. |
|
c2 (int): Number of output channels. |
|
n (int, optional): Number of CIB modules to stack. Defaults to 1. |
|
shortcut (bool, optional): Whether to use shortcut connection. Defaults to False. |
|
lk (bool, optional): Whether to use local key connection. Defaults to False. |
|
g (int, optional): Number of groups for grouped convolution. Defaults to 1. |
|
e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5. |
|
""" |
|
|
|
def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5): |
|
"""Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion.""" |
|
super().__init__(c1, c2, n, shortcut, g, e) |
|
self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n)) |
|
|
|
|
|
class Attention(nn.Module): |
|
""" |
|
Attention module that performs self-attention on the input tensor. |
|
|
|
Args: |
|
dim (int): The input tensor dimension. |
|
num_heads (int): The number of attention heads. |
|
attn_ratio (float): The ratio of the attention key dimension to the head dimension. |
|
|
|
Attributes: |
|
num_heads (int): The number of attention heads. |
|
head_dim (int): The dimension of each attention head. |
|
key_dim (int): The dimension of the attention key. |
|
scale (float): The scaling factor for the attention scores. |
|
qkv (Conv): Convolutional layer for computing the query, key, and value. |
|
proj (Conv): Convolutional layer for projecting the attended values. |
|
pe (Conv): Convolutional layer for positional encoding. |
|
""" |
|
|
|
def __init__(self, dim, num_heads=8, attn_ratio=0.5): |
|
"""Initializes multi-head attention module with query, key, and value convolutions and positional encoding.""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.key_dim = int(self.head_dim * attn_ratio) |
|
self.scale = self.key_dim**-0.5 |
|
nh_kd = self.key_dim * num_heads |
|
h = dim + nh_kd * 2 |
|
self.qkv = Conv(dim, h, 1, act=False) |
|
self.proj = Conv(dim, dim, 1, act=False) |
|
self.pe = Conv(dim, dim, 3, 1, g=dim, act=False) |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the Attention module. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
|
|
Returns: |
|
(torch.Tensor): The output tensor after self-attention. |
|
""" |
|
B, C, H, W = x.shape |
|
N = H * W |
|
qkv = self.qkv(x) |
|
q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split( |
|
[self.key_dim, self.key_dim, self.head_dim], dim=2 |
|
) |
|
|
|
attn = (q.transpose(-2, -1) @ k) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W)) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class PSABlock(nn.Module): |
|
""" |
|
PSABlock class implementing a Position-Sensitive Attention block for neural networks. |
|
|
|
This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers |
|
with optional shortcut connections. |
|
|
|
Attributes: |
|
attn (Attention): Multi-head attention module. |
|
ffn (nn.Sequential): Feed-forward neural network module. |
|
add (bool): Flag indicating whether to add shortcut connections. |
|
|
|
Methods: |
|
forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers. |
|
|
|
Examples: |
|
Create a PSABlock and perform a forward pass |
|
>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True) |
|
>>> input_tensor = torch.randn(1, 128, 32, 32) |
|
>>> output_tensor = psablock(input_tensor) |
|
""" |
|
|
|
def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None: |
|
"""Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction.""" |
|
super().__init__() |
|
|
|
self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads) |
|
self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False)) |
|
self.add = shortcut |
|
|
|
def forward(self, x): |
|
"""Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor.""" |
|
x = x + self.attn(x) if self.add else self.attn(x) |
|
x = x + self.ffn(x) if self.add else self.ffn(x) |
|
return x |
|
|
|
|
|
class PSA(nn.Module): |
|
""" |
|
PSA class for implementing Position-Sensitive Attention in neural networks. |
|
|
|
This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to |
|
input tensors, enhancing feature extraction and processing capabilities. |
|
|
|
Attributes: |
|
c (int): Number of hidden channels after applying the initial convolution. |
|
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. |
|
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. |
|
attn (Attention): Attention module for position-sensitive attention. |
|
ffn (nn.Sequential): Feed-forward network for further processing. |
|
|
|
Methods: |
|
forward: Applies position-sensitive attention and feed-forward network to the input tensor. |
|
|
|
Examples: |
|
Create a PSA module and apply it to an input tensor |
|
>>> psa = PSA(c1=128, c2=128, e=0.5) |
|
>>> input_tensor = torch.randn(1, 128, 64, 64) |
|
>>> output_tensor = psa.forward(input_tensor) |
|
""" |
|
|
|
def __init__(self, c1, c2, e=0.5): |
|
"""Initializes the PSA module with input/output channels and attention mechanism for feature extraction.""" |
|
super().__init__() |
|
assert c1 == c2 |
|
self.c = int(c1 * e) |
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1) |
|
self.cv2 = Conv(2 * self.c, c1, 1) |
|
|
|
self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64) |
|
self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False)) |
|
|
|
def forward(self, x): |
|
"""Executes forward pass in PSA module, applying attention and feed-forward layers to the input tensor.""" |
|
a, b = self.cv1(x).split((self.c, self.c), dim=1) |
|
b = b + self.attn(b) |
|
b = b + self.ffn(b) |
|
return self.cv2(torch.cat((a, b), 1)) |
|
|
|
|
|
class C2PSA(nn.Module): |
|
""" |
|
C2PSA module with attention mechanism for enhanced feature extraction and processing. |
|
|
|
This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing |
|
capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations. |
|
|
|
Attributes: |
|
c (int): Number of hidden channels. |
|
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. |
|
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. |
|
m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations. |
|
|
|
Methods: |
|
forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations. |
|
|
|
Notes: |
|
This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules. |
|
|
|
Examples: |
|
>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5) |
|
>>> input_tensor = torch.randn(1, 256, 64, 64) |
|
>>> output_tensor = c2psa(input_tensor) |
|
""" |
|
|
|
def __init__(self, c1, c2, n=1, e=0.5): |
|
"""Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio.""" |
|
super().__init__() |
|
assert c1 == c2 |
|
self.c = int(c1 * e) |
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1) |
|
self.cv2 = Conv(2 * self.c, c1, 1) |
|
|
|
self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))) |
|
|
|
def forward(self, x): |
|
"""Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor.""" |
|
a, b = self.cv1(x).split((self.c, self.c), dim=1) |
|
b = self.m(b) |
|
return self.cv2(torch.cat((a, b), 1)) |
|
|
|
|
|
class C2fPSA(C2f): |
|
""" |
|
C2fPSA module with enhanced feature extraction using PSA blocks. |
|
|
|
This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction. |
|
|
|
Attributes: |
|
c (int): Number of hidden channels. |
|
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. |
|
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. |
|
m (nn.ModuleList): List of PSA blocks for feature extraction. |
|
|
|
Methods: |
|
forward: Performs a forward pass through the C2fPSA module. |
|
forward_split: Performs a forward pass using split() instead of chunk(). |
|
|
|
Examples: |
|
>>> import torch |
|
>>> from ultralytics.models.common import C2fPSA |
|
>>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5) |
|
>>> x = torch.randn(1, 64, 128, 128) |
|
>>> output = model(x) |
|
>>> print(output.shape) |
|
""" |
|
|
|
def __init__(self, c1, c2, n=1, e=0.5): |
|
"""Initializes the C2fPSA module, a variant of C2f with PSA blocks for enhanced feature extraction.""" |
|
assert c1 == c2 |
|
super().__init__(c1, c2, n=n, e=e) |
|
self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)) |
|
|
|
|
|
class SCDown(nn.Module): |
|
""" |
|
SCDown module for downsampling with separable convolutions. |
|
|
|
This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in |
|
efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information. |
|
|
|
Attributes: |
|
cv1 (Conv): Pointwise convolution layer that reduces the number of channels. |
|
cv2 (Conv): Depthwise convolution layer that performs spatial downsampling. |
|
|
|
Methods: |
|
forward: Applies the SCDown module to the input tensor. |
|
|
|
Examples: |
|
>>> import torch |
|
>>> from ultralytics import SCDown |
|
>>> model = SCDown(c1=64, c2=128, k=3, s=2) |
|
>>> x = torch.randn(1, 64, 128, 128) |
|
>>> y = model(x) |
|
>>> print(y.shape) |
|
torch.Size([1, 128, 64, 64]) |
|
""" |
|
|
|
def __init__(self, c1, c2, k, s): |
|
"""Initializes the SCDown module with specified input/output channels, kernel size, and stride.""" |
|
super().__init__() |
|
self.cv1 = Conv(c1, c2, 1, 1) |
|
self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False) |
|
|
|
def forward(self, x): |
|
"""Applies convolution and downsampling to the input tensor in the SCDown module.""" |
|
return self.cv2(self.cv1(x)) |
|
|
|
|
|
class TorchVision(nn.Module): |
|
""" |
|
TorchVision module to allow loading any torchvision model. |
|
|
|
This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and customize the model by truncating or unwrapping layers. |
|
|
|
Attributes: |
|
m (nn.Module): The loaded torchvision model, possibly truncated and unwrapped. |
|
|
|
Args: |
|
c1 (int): Input channels. |
|
c2 (): Output channels. |
|
model (str): Name of the torchvision model to load. |
|
weights (str, optional): Pre-trained weights to load. Default is "DEFAULT". |
|
unwrap (bool, optional): If True, unwraps the model to a sequential containing all but the last `truncate` layers. Default is True. |
|
truncate (int, optional): Number of layers to truncate from the end if `unwrap` is True. Default is 2. |
|
split (bool, optional): Returns output from intermediate child modules as list. Default is False. |
|
""" |
|
|
|
def __init__(self, c1, c2, model, weights="DEFAULT", unwrap=True, truncate=2, split=False): |
|
"""Load the model and weights from torchvision.""" |
|
import torchvision |
|
|
|
super().__init__() |
|
if hasattr(torchvision.models, "get_model"): |
|
self.m = torchvision.models.get_model(model, weights=weights) |
|
else: |
|
self.m = torchvision.models.__dict__[model](pretrained=bool(weights)) |
|
if unwrap: |
|
layers = list(self.m.children())[:-truncate] |
|
if isinstance(layers[0], nn.Sequential): |
|
layers = [*list(layers[0].children()), *layers[1:]] |
|
self.m = nn.Sequential(*layers) |
|
self.split = split |
|
else: |
|
self.split = False |
|
self.m.head = self.m.heads = nn.Identity() |
|
|
|
def forward(self, x): |
|
"""Forward pass through the model.""" |
|
if self.split: |
|
y = [x] |
|
y.extend(m(y[-1]) for m in self.m) |
|
else: |
|
y = self.m(x) |
|
return y |
|
|
|
try: |
|
from flash_attn.flash_attn_interface import flash_attn_func |
|
except Exception: |
|
|
|
pass |
|
from timm.models.layers import trunc_normal_ |
|
|
|
class AAttn(nn.Module): |
|
""" |
|
Area-attention module with the requirement of flash attention. |
|
|
|
Attributes: |
|
dim (int): Number of hidden channels; |
|
num_heads (int): Number of heads into which the attention mechanism is divided; |
|
area (int, optional): Number of areas the feature map is divided. Defaults to 1. |
|
|
|
Methods: |
|
forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism. |
|
|
|
Examples: |
|
>>> import torch |
|
>>> from ultralytics.nn.modules import AAttn |
|
>>> model = AAttn(dim=64, num_heads=2, area=4) |
|
>>> x = torch.randn(2, 64, 128, 128) |
|
>>> output = model(x) |
|
>>> print(output.shape) |
|
|
|
Notes: |
|
recommend that dim//num_heads be a multiple of 32 or 64. |
|
|
|
""" |
|
|
|
def __init__(self, dim, num_heads, area=1): |
|
"""Initializes the area-attention module, a simple yet efficient attention module for YOLO.""" |
|
super().__init__() |
|
self.area = area |
|
|
|
self.num_heads = num_heads |
|
self.head_dim = head_dim = dim // num_heads |
|
all_head_dim = head_dim * self.num_heads |
|
|
|
self.qkv = Conv(dim, all_head_dim * 3, 1, act=False) |
|
self.proj = Conv(all_head_dim, dim, 1, act=False) |
|
self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False) |
|
|
|
|
|
def forward(self, x): |
|
"""Processes the input tensor 'x' through the area-attention""" |
|
B, C, H, W = x.shape |
|
N = H * W |
|
|
|
qkv = self.qkv(x).flatten(2).transpose(1, 2) |
|
if self.area > 1: |
|
qkv = qkv.reshape(B * self.area, N // self.area, C * 3) |
|
B, N, _ = qkv.shape |
|
q, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split( |
|
[self.head_dim, self.head_dim, self.head_dim], dim=3 |
|
) |
|
|
|
if x.is_cuda: |
|
x = flash_attn_func( |
|
q.contiguous().half(), |
|
k.contiguous().half(), |
|
v.contiguous().half() |
|
).to(q.dtype) |
|
else: |
|
q = q.permute(0, 2, 3, 1) |
|
k = k.permute(0, 2, 3, 1) |
|
v = v.permute(0, 2, 3, 1) |
|
attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5) |
|
max_attn = attn.max(dim=-1, keepdim=True).values |
|
exp_attn = torch.exp(attn - max_attn) |
|
attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True) |
|
x = (v @ attn.transpose(-2, -1)) |
|
x = x.permute(0, 3, 1, 2) |
|
v = v.permute(0, 3, 1, 2) |
|
|
|
if self.area > 1: |
|
x = x.reshape(B // self.area, N * self.area, C) |
|
v = v.reshape(B // self.area, N * self.area, C) |
|
B, N, _ = x.shape |
|
|
|
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) |
|
v = v.reshape(B, H, W, C).permute(0, 3, 1, 2) |
|
|
|
x = x + self.pe(v) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class ABlock(nn.Module): |
|
""" |
|
ABlock class implementing a Area-Attention block with effective feature extraction. |
|
|
|
This class encapsulates the functionality for applying multi-head attention with feature map are dividing into areas |
|
and feed-forward neural network layers. |
|
|
|
Attributes: |
|
dim (int): Number of hidden channels; |
|
num_heads (int): Number of heads into which the attention mechanism is divided; |
|
mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2; |
|
area (int, optional): Number of areas the feature map is divided. Defaults to 1. |
|
|
|
Methods: |
|
forward: Performs a forward pass through the ABlock, applying area-attention and feed-forward layers. |
|
|
|
Examples: |
|
Create a ABlock and perform a forward pass |
|
>>> model = ABlock(dim=64, num_heads=2, mlp_ratio=1.2, area=4) |
|
>>> x = torch.randn(2, 64, 128, 128) |
|
>>> output = model(x) |
|
>>> print(output.shape) |
|
|
|
Notes: |
|
recommend that dim//num_heads be a multiple of 32 or 64. |
|
""" |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=1.2, area=1): |
|
"""Initializes the ABlock with area-attention and feed-forward layers for faster feature extraction.""" |
|
super().__init__() |
|
|
|
self.attn = AAttn(dim, num_heads=num_heads, area=area) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False)) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
"""Initialize weights using a truncated normal distribution.""" |
|
if isinstance(m, nn.Conv2d): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Conv2d) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
"""Executes a forward pass through ABlock, applying area-attention and feed-forward layers to the input tensor.""" |
|
x = x + self.attn(x) |
|
x = x + self.mlp(x) |
|
return x |
|
|
|
|
|
class A2C2f(nn.Module): |
|
""" |
|
A2C2f module with residual enhanced feature extraction using ABlock blocks with area-attention. Also known as R-ELAN |
|
|
|
This class extends the C2f module by incorporating ABlock blocks for fast attention mechanisms and feature extraction. |
|
|
|
Attributes: |
|
c1 (int): Number of input channels; |
|
c2 (int): Number of output channels; |
|
n (int, optional): Number of 2xABlock modules to stack. Defaults to 1; |
|
a2 (bool, optional): Whether use area-attention. Defaults to True; |
|
area (int, optional): Number of areas the feature map is divided. Defaults to 1; |
|
residual (bool, optional): Whether use the residual (with layer scale). Defaults to False; |
|
mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2; |
|
e (float, optional): Expansion ratio for R-ELAN modules. Defaults to 0.5. |
|
g (int, optional): Number of groups for grouped convolution. Defaults to 1; |
|
shortcut (bool, optional): Whether to use shortcut connection. Defaults to True; |
|
|
|
Methods: |
|
forward: Performs a forward pass through the A2C2f module. |
|
|
|
Examples: |
|
>>> import torch |
|
>>> from ultralytics.nn.modules import A2C2f |
|
>>> model = A2C2f(c1=64, c2=64, n=2, a2=True, area=4, residual=True, e=0.5) |
|
>>> x = torch.randn(2, 64, 128, 128) |
|
>>> output = model(x) |
|
>>> print(output.shape) |
|
""" |
|
|
|
def __init__(self, c1, c2, n=1, a2=True, area=1, residual=False, mlp_ratio=2.0, e=0.5, g=1, shortcut=True): |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32." |
|
|
|
|
|
num_heads = c_ // 32 |
|
|
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
self.cv2 = Conv((1 + n) * c_, c2, 1) |
|
|
|
init_values = 0.01 |
|
self.gamma = nn.Parameter(init_values * torch.ones((c2)), requires_grad=True) if a2 and residual else None |
|
|
|
self.m = nn.ModuleList( |
|
nn.Sequential(*(ABlock(c_, num_heads, mlp_ratio, area) for _ in range(2))) if a2 else C3k(c_, c_, 2, shortcut, g) for _ in range(n) |
|
) |
|
|
|
def forward(self, x): |
|
"""Forward pass through R-ELAN layer.""" |
|
y = [self.cv1(x)] |
|
y.extend(m(y[-1]) for m in self.m) |
|
if self.gamma is not None: |
|
return x + (self.gamma * self.cv2(torch.cat(y, 1)).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
return self.cv2(torch.cat(y, 1)) |
|
|