Firoj112 commited on
Commit
3269880
·
verified ·
1 Parent(s): 7c116f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -2
README.md CHANGED
@@ -1,10 +1,72 @@
1
  ---
2
  title: README
3
  emoji: 🏃
4
- colorFrom: yellow
5
  colorTo: gray
6
  sdk: static
7
  pinned: false
8
  ---
 
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: README
3
  emoji: 🏃
4
+ colorFrom: indigo
5
  colorTo: gray
6
  sdk: static
7
  pinned: false
8
  ---
9
+ # GEM_Testing_Arsenal
10
 
11
+ Welcome to ***GEM_Testing_Arsenal***, where groundbreaking research meets practical power! This repository unveils a novel architecture for On-Device Language Models (ODLMs), straight from our paper, ["Fragile Mastery: are domain-specific trade-offs undermining On-Device Language Models?"](./link_to_be_insterted). With just a few lines of code, our custom `gem_trainer.py` script lets you train ODLMs that are more accurate than ever, tracking accuracy and loss as you go.
12
+
13
+ ---
14
+
15
+ ### Highlights:
16
+ - **Next-Level ODLMs**: Boosts accuracy with a new architecture from our research.
17
+ - **Easy Training**: Call run_gem_pipeline to train on your dataset in minutes.
18
+ - **Live Metrics**: Get accuracy and loss results as training unfolds.
19
+ - **Flexible Design**: Works with any compatible dataset—plug and play!
20
+
21
+ ---
22
+ ### Prerequisites:
23
+ To dive in, you’ll need:
24
+ - **Python** `3.8+`
25
+
26
+ - Required libraries (go through [quick start](#quick-start) below 👇)
27
+
28
+ - **Git** *(to clone the repo)*
29
+
30
+ ---
31
+ ### Quick Start:
32
+
33
+ 1. **Clone the repository:**
34
+ ```bash
35
+ git clone https://github.com/Firojpaudel/GEM.git
36
+ ```
37
+
38
+ 2. **Install Dependencies:**
39
+ ```pwsh
40
+ pip install -r requirements.txt
41
+ ```
42
+
43
+ 3. **Train Your Model:**
44
+ Create a new python file and execute the code like:
45
+ ```python
46
+ from datasets import load_dataset
47
+ from gem_trainer import run_gem_pipeline
48
+
49
+ # Load a dataset (e.g., Banking77) {just replace the dataset here.}
50
+ dataset = load_dataset("banking77")
51
+
52
+ # Train the ODLM
53
+ results = run_gem_pipeline(dataset, num_classes=77)
54
+
55
+ print(results) # See accuracy and loss
56
+ ```
57
+
58
+ > ***Boom—your ODLM is training with boosted accuracy!***
59
+
60
+ ---
61
+ ### Customizing Training:
62
+ `run_gem_pipeline` keeps it simple, but you can tweak it! Dive into [`gem_trainer.py`](./gem_trainer.py) to adjust epochs, batch size, or other settings to fit your needs.
63
+
64
+ ---
65
+ ### Contributing 💓
66
+ Got ideas to make this even better? We’re all ears!
67
+ - Fork the repo.
68
+ - Branch off (`git checkout -b your-feature`).
69
+ - Submit a pull request with your magic.
70
+
71
+ ---
72
+ Edit this `README.md` markdown file to author your organization card.