Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""A streamable transformer.""" | |
import typing as tp | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def create_sin_embedding(positions: torch.Tensor, dim: int, max_period: float = 10000): | |
"""Create time embedding for the given positions, target dimension `dim`. | |
""" | |
# We aim for BTC format | |
assert dim % 2 == 0 | |
half_dim = dim // 2 | |
adim = torch.arange(half_dim, device=positions.device).view(1, 1, -1) | |
phase = positions / (max_period ** (adim / (half_dim - 1))) | |
return torch.cat([ | |
torch.cos(phase), | |
torch.sin(phase), | |
], dim=-1) | |
class StreamingTransformerEncoderLayer(nn.TransformerEncoderLayer): | |
def forward(self, x: torch.Tensor, x_past: torch.Tensor, past_context: int): # type: ignore | |
if self.norm_first: | |
sa_input = self.norm1(x) | |
x = x + self._sa_block(sa_input, x_past, past_context) | |
x = x + self._ff_block(self.norm2(x)) | |
else: | |
sa_input = x | |
x = self.norm1(x + self._sa_block(sa_input, x_past, past_context)) | |
x = self.norm2(x + self._ff_block(x)) | |
return x, sa_input | |
# self-attention block | |
def _sa_block(self, x: torch.Tensor, x_past: torch.Tensor, past_context: int): # type: ignore | |
_, T, _ = x.shape | |
_, H, _ = x_past.shape | |
queries = x | |
keys = torch.cat([x_past, x], dim=1) | |
values = keys | |
queries_pos = torch.arange(H, T + H, device=x.device).view(-1, 1) | |
keys_pos = torch.arange(T + H, device=x.device).view(1, -1) | |
delta = queries_pos - keys_pos | |
valid_access = (delta >= 0) & (delta <= past_context) | |
x = self.self_attn(queries, keys, values, | |
attn_mask=~valid_access, | |
need_weights=False)[0] | |
return self.dropout1(x) | |
class StreamingTransformerEncoder(nn.Module): | |
"""TransformerEncoder with streaming support. | |
Args: | |
dim (int): dimension of the data. | |
hidden_scale (int): intermediate dimension of FF module is this times the dimension. | |
num_heads (int): number of heads. | |
num_layers (int): number of layers. | |
max_period (float): maxium period of cosines in the positional embedding. | |
past_context (int or None): receptive field for the causal mask, infinite if None. | |
gelu (bool): if true uses GeLUs, otherwise use ReLUs. | |
norm_in (bool): normalize the input. | |
dropout (float): dropout probability. | |
**kwargs: See `nn.TransformerEncoderLayer`. | |
""" | |
def __init__(self, dim, hidden_scale: float = 4., num_heads: int = 8, num_layers: int = 5, | |
max_period: float = 10000, past_context: int = 1000, gelu: bool = True, | |
norm_in: bool = True, dropout: float = 0., **kwargs): | |
super().__init__() | |
assert dim % num_heads == 0 | |
hidden_dim = int(dim * hidden_scale) | |
self.max_period = max_period | |
self.past_context = past_context | |
activation: tp.Any = F.gelu if gelu else F.relu | |
self.norm_in: nn.Module | |
if norm_in: | |
self.norm_in = nn.LayerNorm(dim) | |
else: | |
self.norm_in = nn.Identity() | |
self.layers = nn.ModuleList() | |
for idx in range(num_layers): | |
self.layers.append( | |
StreamingTransformerEncoderLayer( | |
dim, num_heads, hidden_dim, | |
activation=activation, batch_first=True, dropout=dropout, **kwargs)) | |
def forward(self, x: torch.Tensor, | |
states: tp.Optional[tp.List[torch.Tensor]] = None, | |
offset: tp.Union[int, torch.Tensor] = 0): | |
B, T, C = x.shape | |
if states is None: | |
states = [torch.zeros_like(x[:, :1]) for _ in range(1 + len(self.layers))] | |
positions = torch.arange(T, device=x.device).view(1, -1, 1) + offset | |
pos_emb = create_sin_embedding(positions, C, max_period=self.max_period) | |
new_state: tp.List[torch.Tensor] = [] | |
x = self.norm_in(x) | |
x = x + pos_emb | |
for layer_state, layer in zip(states, self.layers): | |
x, new_layer_state = layer(x, layer_state, self.past_context) | |
new_layer_state = torch.cat([layer_state, new_layer_state], dim=1) | |
new_state.append(new_layer_state[:, -self.past_context:, :]) | |
return x, new_state, offset + T | |