Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""Encodec SEANet-based encoder and decoder implementation.""" | |
import typing as tp | |
import numpy as np | |
import torch.nn as nn | |
from . import ( | |
SConv1d, | |
SConvTranspose1d, | |
SLSTM | |
) | |
class SEANetResnetBlock(nn.Module): | |
"""Residual block from SEANet model. | |
Args: | |
dim (int): Dimension of the input/output | |
kernel_sizes (list): List of kernel sizes for the convolutions. | |
dilations (list): List of dilations for the convolutions. | |
activation (str): Activation function. | |
activation_params (dict): Parameters to provide to the activation function | |
norm (str): Normalization method. | |
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
causal (bool): Whether to use fully causal convolution. | |
pad_mode (str): Padding mode for the convolutions. | |
compress (int): Reduced dimensionality in residual branches (from Demucs v3) | |
true_skip (bool): Whether to use true skip connection or a simple convolution as the skip connection. | |
""" | |
def __init__(self, dim: int, kernel_sizes: tp.List[int] = [3, 1], dilations: tp.List[int] = [1, 1], | |
activation: str = 'ELU', activation_params: dict = {'alpha': 1.0}, | |
norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, causal: bool = False, | |
pad_mode: str = 'reflect', compress: int = 2, true_skip: bool = True): | |
super().__init__() | |
assert len(kernel_sizes) == len(dilations), 'Number of kernel sizes should match number of dilations' | |
act = getattr(nn, activation) | |
hidden = dim // compress | |
block = [] | |
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): | |
in_chs = dim if i == 0 else hidden | |
out_chs = dim if i == len(kernel_sizes) - 1 else hidden | |
block += [ | |
act(**activation_params), | |
SConv1d(in_chs, out_chs, kernel_size=kernel_size, dilation=dilation, | |
norm=norm, norm_kwargs=norm_params, | |
causal=causal, pad_mode=pad_mode), | |
] | |
self.block = nn.Sequential(*block) | |
self.shortcut: nn.Module | |
if true_skip: | |
self.shortcut = nn.Identity() | |
else: | |
self.shortcut = SConv1d(dim, dim, kernel_size=1, norm=norm, norm_kwargs=norm_params, | |
causal=causal, pad_mode=pad_mode) | |
def forward(self, x): | |
return self.shortcut(x) + self.block(x) | |
class SEANetEncoder(nn.Module): | |
"""SEANet encoder. | |
Args: | |
channels (int): Audio channels. | |
dimension (int): Intermediate representation dimension. | |
n_filters (int): Base width for the model. | |
n_residual_layers (int): nb of residual layers. | |
ratios (Sequence[int]): kernel size and stride ratios. The encoder uses downsampling ratios instead of | |
upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here | |
that must match the decoder order | |
activation (str): Activation function. | |
activation_params (dict): Parameters to provide to the activation function | |
norm (str): Normalization method. | |
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
kernel_size (int): Kernel size for the initial convolution. | |
last_kernel_size (int): Kernel size for the initial convolution. | |
residual_kernel_size (int): Kernel size for the residual layers. | |
dilation_base (int): How much to increase the dilation with each layer. | |
causal (bool): Whether to use fully causal convolution. | |
pad_mode (str): Padding mode for the convolutions. | |
true_skip (bool): Whether to use true skip connection or a simple | |
(streamable) convolution as the skip connection in the residual network blocks. | |
compress (int): Reduced dimensionality in residual branches (from Demucs v3). | |
lstm (int): Number of LSTM layers at the end of the encoder. | |
""" | |
def __init__(self, channels: int = 1, dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 1, | |
ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0}, | |
norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, kernel_size: int = 7, | |
last_kernel_size: int = 7, residual_kernel_size: int = 3, dilation_base: int = 2, causal: bool = False, | |
pad_mode: str = 'reflect', true_skip: bool = False, compress: int = 2, lstm: int = 2): | |
super().__init__() | |
self.channels = channels | |
self.dimension = dimension | |
self.n_filters = n_filters | |
self.ratios = list(reversed(ratios)) | |
del ratios | |
self.n_residual_layers = n_residual_layers | |
self.hop_length = np.prod(self.ratios) | |
act = getattr(nn, activation) | |
mult = 1 | |
model: tp.List[nn.Module] = [ | |
SConv1d(channels, mult * n_filters, kernel_size, norm=norm, norm_kwargs=norm_params, | |
causal=causal, pad_mode=pad_mode) | |
] | |
# Downsample to raw audio scale | |
for i, ratio in enumerate(self.ratios): | |
# Add residual layers | |
for j in range(n_residual_layers): | |
model += [ | |
SEANetResnetBlock(mult * n_filters, kernel_sizes=[residual_kernel_size, 1], | |
dilations=[dilation_base ** j, 1], | |
norm=norm, norm_params=norm_params, | |
activation=activation, activation_params=activation_params, | |
causal=causal, pad_mode=pad_mode, compress=compress, true_skip=true_skip)] | |
# Add downsampling layers | |
model += [ | |
act(**activation_params), | |
SConv1d(mult * n_filters, mult * n_filters * 2, | |
kernel_size=ratio * 2, stride=ratio, | |
norm=norm, norm_kwargs=norm_params, | |
causal=causal, pad_mode=pad_mode), | |
] | |
mult *= 2 | |
if lstm: | |
model += [SLSTM(mult * n_filters, num_layers=lstm)] | |
model += [ | |
act(**activation_params), | |
SConv1d(mult * n_filters, dimension, last_kernel_size, norm=norm, norm_kwargs=norm_params, | |
causal=causal, pad_mode=pad_mode) | |
] | |
self.model = nn.Sequential(*model) | |
def forward(self, x): | |
return self.model(x) | |
class SEANetDecoder(nn.Module): | |
"""SEANet decoder. | |
Args: | |
channels (int): Audio channels. | |
dimension (int): Intermediate representation dimension. | |
n_filters (int): Base width for the model. | |
n_residual_layers (int): nb of residual layers. | |
ratios (Sequence[int]): kernel size and stride ratios | |
activation (str): Activation function. | |
activation_params (dict): Parameters to provide to the activation function | |
final_activation (str): Final activation function after all convolutions. | |
final_activation_params (dict): Parameters to provide to the activation function | |
norm (str): Normalization method. | |
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
kernel_size (int): Kernel size for the initial convolution. | |
last_kernel_size (int): Kernel size for the initial convolution. | |
residual_kernel_size (int): Kernel size for the residual layers. | |
dilation_base (int): How much to increase the dilation with each layer. | |
causal (bool): Whether to use fully causal convolution. | |
pad_mode (str): Padding mode for the convolutions. | |
true_skip (bool): Whether to use true skip connection or a simple | |
(streamable) convolution as the skip connection in the residual network blocks. | |
compress (int): Reduced dimensionality in residual branches (from Demucs v3). | |
lstm (int): Number of LSTM layers at the end of the encoder. | |
trim_right_ratio (float): Ratio for trimming at the right of the transposed convolution under the causal setup. | |
If equal to 1.0, it means that all the trimming is done at the right. | |
""" | |
def __init__(self, channels: int = 1, dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 1, | |
ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0}, | |
final_activation: tp.Optional[str] = None, final_activation_params: tp.Optional[dict] = None, | |
norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, kernel_size: int = 7, | |
last_kernel_size: int = 7, residual_kernel_size: int = 3, dilation_base: int = 2, causal: bool = False, | |
pad_mode: str = 'reflect', true_skip: bool = False, compress: int = 2, lstm: int = 2, | |
trim_right_ratio: float = 1.0): | |
super().__init__() | |
self.dimension = dimension | |
self.channels = channels | |
self.n_filters = n_filters | |
self.ratios = ratios | |
del ratios | |
self.n_residual_layers = n_residual_layers | |
self.hop_length = np.prod(self.ratios) | |
act = getattr(nn, activation) | |
mult = int(2 ** len(self.ratios)) | |
model: tp.List[nn.Module] = [ | |
SConv1d(dimension, mult * n_filters, kernel_size, norm=norm, norm_kwargs=norm_params, | |
causal=causal, pad_mode=pad_mode) | |
] | |
if lstm: | |
model += [SLSTM(mult * n_filters, num_layers=lstm)] | |
# Upsample to raw audio scale | |
for i, ratio in enumerate(self.ratios): | |
# Add upsampling layers | |
model += [ | |
act(**activation_params), | |
SConvTranspose1d(mult * n_filters, mult * n_filters // 2, | |
kernel_size=ratio * 2, stride=ratio, | |
norm=norm, norm_kwargs=norm_params, | |
causal=causal, trim_right_ratio=trim_right_ratio), | |
] | |
# Add residual layers | |
for j in range(n_residual_layers): | |
model += [ | |
SEANetResnetBlock(mult * n_filters // 2, kernel_sizes=[residual_kernel_size, 1], | |
dilations=[dilation_base ** j, 1], | |
activation=activation, activation_params=activation_params, | |
norm=norm, norm_params=norm_params, causal=causal, | |
pad_mode=pad_mode, compress=compress, true_skip=true_skip)] | |
mult //= 2 | |
# Add final layers | |
model += [ | |
act(**activation_params), | |
SConv1d(n_filters, channels, last_kernel_size, norm=norm, norm_kwargs=norm_params, | |
causal=causal, pad_mode=pad_mode) | |
] | |
# Add optional final activation to decoder (eg. tanh) | |
if final_activation is not None: | |
final_act = getattr(nn, final_activation) | |
final_activation_params = final_activation_params or {} | |
model += [ | |
final_act(**final_activation_params) | |
] | |
self.model = nn.Sequential(*model) | |
def forward(self, z): | |
y = self.model(z) | |
return y | |
def test(): | |
import torch | |
encoder = SEANetEncoder() | |
decoder = SEANetDecoder() | |
x = torch.randn(1, 1, 24000) | |
z = encoder(x) | |
assert list(z.shape) == [1, 128, 75], z.shape | |
y = decoder(z) | |
assert y.shape == x.shape, (x.shape, y.shape) | |
if __name__ == '__main__': | |
test() | |