Spaces:
Running
Running
File size: 12,769 Bytes
5827423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""EnCodec model implementation."""
import math
from pathlib import Path
import typing as tp
import numpy as np
import torch
from torch import nn
from . import quantization as qt
from . import modules as m
from .utils import _check_checksum, _linear_overlap_add, _get_checkpoint_url
ROOT_URL = 'https://dl.fbaipublicfiles.com/encodec/v0/'
EncodedFrame = tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]
class LMModel(nn.Module):
"""Language Model to estimate probabilities of each codebook entry.
We predict all codebooks in parallel for a given time step.
Args:
n_q (int): number of codebooks.
card (int): codebook cardinality.
dim (int): transformer dimension.
**kwargs: passed to `encoder.modules.transformer.StreamingTransformerEncoder`.
"""
def __init__(self, n_q: int = 32, card: int = 1024, dim: int = 200, **kwargs):
super().__init__()
self.card = card
self.n_q = n_q
self.dim = dim
self.transformer = m.StreamingTransformerEncoder(dim=dim, **kwargs)
self.emb = nn.ModuleList([nn.Embedding(card + 1, dim) for _ in range(n_q)])
self.linears = nn.ModuleList([nn.Linear(dim, card) for _ in range(n_q)])
def forward(self, indices: torch.Tensor,
states: tp.Optional[tp.List[torch.Tensor]] = None, offset: int = 0):
"""
Args:
indices (torch.Tensor): indices from the previous time step. Indices
should be 1 + actual index in the codebook. The value 0 is reserved for
when the index is missing (i.e. first time step). Shape should be
`[B, n_q, T]`.
states: state for the streaming decoding.
offset: offset of the current time step.
Returns a 3-tuple `(probabilities, new_states, new_offset)` with probabilities
with a shape `[B, card, n_q, T]`.
"""
B, K, T = indices.shape
input_ = sum([self.emb[k](indices[:, k]) for k in range(K)])
out, states, offset = self.transformer(input_, states, offset)
logits = torch.stack([self.linears[k](out) for k in range(K)], dim=1).permute(0, 3, 1, 2)
return torch.softmax(logits, dim=1), states, offset
class EncodecModel(nn.Module):
"""EnCodec model operating on the raw waveform.
Args:
target_bandwidths (list of float): Target bandwidths.
encoder (nn.Module): Encoder network.
decoder (nn.Module): Decoder network.
sample_rate (int): Audio sample rate.
channels (int): Number of audio channels.
normalize (bool): Whether to apply audio normalization.
segment (float or None): segment duration in sec. when doing overlap-add.
overlap (float): overlap between segment, given as a fraction of the segment duration.
name (str): name of the model, used as metadata when compressing audio.
"""
def __init__(self,
encoder: m.SEANetEncoder,
decoder: m.SEANetDecoder,
quantizer: qt.ResidualVectorQuantizer,
target_bandwidths: tp.List[float],
sample_rate: int,
channels: int,
normalize: bool = False,
segment: tp.Optional[float] = None,
overlap: float = 0.01,
name: str = 'unset'):
super().__init__()
self.bandwidth: tp.Optional[float] = None
self.target_bandwidths = target_bandwidths
self.encoder = encoder
self.quantizer = quantizer
self.decoder = decoder
self.sample_rate = sample_rate
self.channels = channels
self.normalize = normalize
self.segment = segment
self.overlap = overlap
self.frame_rate = math.ceil(self.sample_rate / np.prod(self.encoder.ratios))
self.name = name
self.bits_per_codebook = int(math.log2(self.quantizer.bins))
assert 2 ** self.bits_per_codebook == self.quantizer.bins, \
"quantizer bins must be a power of 2."
@property
def segment_length(self) -> tp.Optional[int]:
if self.segment is None:
return None
return int(self.segment * self.sample_rate)
@property
def segment_stride(self) -> tp.Optional[int]:
segment_length = self.segment_length
if segment_length is None:
return None
return max(1, int((1 - self.overlap) * segment_length))
def encode(self, x: torch.Tensor) -> tp.List[EncodedFrame]:
"""Given a tensor `x`, returns a list of frames containing
the discrete encoded codes for `x`, along with rescaling factors
for each segment, when `self.normalize` is True.
Each frames is a tuple `(codebook, scale)`, with `codebook` of
shape `[B, K, T]`, with `K` the number of codebooks.
"""
assert x.dim() == 3
_, channels, length = x.shape
assert channels > 0 and channels <= 2
segment_length = self.segment_length
if segment_length is None:
segment_length = length
stride = length
else:
stride = self.segment_stride # type: ignore
assert stride is not None
encoded_frames: tp.List[EncodedFrame] = []
for offset in range(0, length, stride):
frame = x[:, :, offset: offset + segment_length]
encoded_frames.append(self._encode_frame(frame))
return encoded_frames
def _encode_frame(self, x: torch.Tensor) -> EncodedFrame:
length = x.shape[-1]
duration = length / self.sample_rate
assert self.segment is None or duration <= 1e-5 + self.segment
if self.normalize:
mono = x.mean(dim=1, keepdim=True)
volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt()
scale = 1e-8 + volume
x = x / scale
scale = scale.view(-1, 1)
else:
scale = None
emb = self.encoder(x)
codes = self.quantizer.encode(emb, self.frame_rate, self.bandwidth)
codes = codes.transpose(0, 1)
# codes is [B, K, T], with T frames, K nb of codebooks.
return codes, scale
def decode(self, encoded_frames: tp.List[EncodedFrame]) -> torch.Tensor:
"""Decode the given frames into a waveform.
Note that the output might be a bit bigger than the input. In that case,
any extra steps at the end can be trimmed.
"""
segment_length = self.segment_length
if segment_length is None:
assert len(encoded_frames) == 1
return self._decode_frame(encoded_frames[0])
frames = [self._decode_frame(frame) for frame in encoded_frames]
return _linear_overlap_add(frames, self.segment_stride or 1)
def _decode_frame(self, encoded_frame: EncodedFrame) -> torch.Tensor:
codes, scale = encoded_frame
codes = codes.transpose(0, 1)
emb = self.quantizer.decode(codes)
out = self.decoder(emb)
if scale is not None:
out = out * scale.view(-1, 1, 1)
return out
def forward(self, x: torch.Tensor) -> torch.Tensor:
frames = self.encode(x)
return self.decode(frames)[:, :, :x.shape[-1]]
def set_target_bandwidth(self, bandwidth: float):
if bandwidth not in self.target_bandwidths:
raise ValueError(f"This model doesn't support the bandwidth {bandwidth}. "
f"Select one of {self.target_bandwidths}.")
self.bandwidth = bandwidth
def get_lm_model(self) -> LMModel:
"""Return the associated LM model to improve the compression rate.
"""
device = next(self.parameters()).device
lm = LMModel(self.quantizer.n_q, self.quantizer.bins, num_layers=5, dim=200,
past_context=int(3.5 * self.frame_rate)).to(device)
checkpoints = {
'encodec_24khz': 'encodec_lm_24khz-1608e3c0.th',
'encodec_48khz': 'encodec_lm_48khz-7add9fc3.th',
}
try:
checkpoint_name = checkpoints[self.name]
except KeyError:
raise RuntimeError("No LM pre-trained for the current Encodec model.")
url = _get_checkpoint_url(ROOT_URL, checkpoint_name)
state = torch.hub.load_state_dict_from_url(
url, map_location='cpu', check_hash=True) # type: ignore
lm.load_state_dict(state)
lm.eval()
return lm
@staticmethod
def _get_model(target_bandwidths: tp.List[float],
sample_rate: int = 24_000,
channels: int = 1,
causal: bool = True,
model_norm: str = 'weight_norm',
audio_normalize: bool = False,
segment: tp.Optional[float] = None,
name: str = 'unset'):
encoder = m.SEANetEncoder(channels=channels, norm=model_norm, causal=causal)
decoder = m.SEANetDecoder(channels=channels, norm=model_norm, causal=causal)
n_q = int(1000 * target_bandwidths[-1] // (math.ceil(sample_rate / encoder.hop_length) * 10))
quantizer = qt.ResidualVectorQuantizer(
dimension=encoder.dimension,
n_q=n_q,
bins=1024,
)
model = EncodecModel(
encoder,
decoder,
quantizer,
target_bandwidths,
sample_rate,
channels,
normalize=audio_normalize,
segment=segment,
name=name,
)
return model
@staticmethod
def _get_pretrained(checkpoint_name: str, repository: tp.Optional[Path] = None):
if repository is not None:
if not repository.is_dir():
raise ValueError(f"{repository} must exist and be a directory.")
file = repository / checkpoint_name
checksum = file.stem.split('-')[1]
_check_checksum(file, checksum)
return torch.load(file)
else:
url = _get_checkpoint_url(ROOT_URL, checkpoint_name)
return torch.hub.load_state_dict_from_url(url, map_location='cpu', check_hash=True) # type:ignore
@staticmethod
def encodec_model_24khz(pretrained: bool = True, repository: tp.Optional[Path] = None):
"""Return the pretrained causal 24khz model.
"""
if repository:
assert pretrained
target_bandwidths = [1.5, 3., 6, 12., 24.]
checkpoint_name = 'encodec_24khz-d7cc33bc.th'
sample_rate = 24_000
channels = 1
model = EncodecModel._get_model(
target_bandwidths, sample_rate, channels,
causal=True, model_norm='weight_norm', audio_normalize=False,
name='encodec_24khz' if pretrained else 'unset')
if pretrained:
state_dict = EncodecModel._get_pretrained(checkpoint_name, repository)
model.load_state_dict(state_dict)
model.eval()
return model
@staticmethod
def encodec_model_48khz(pretrained: bool = True, repository: tp.Optional[Path] = None):
"""Return the pretrained 48khz model.
"""
if repository:
assert pretrained
target_bandwidths = [3., 6., 12., 24.]
checkpoint_name = 'encodec_48khz-7e698e3e.th'
sample_rate = 48_000
channels = 2
model = EncodecModel._get_model(
target_bandwidths, sample_rate, channels,
causal=False, model_norm='time_group_norm', audio_normalize=True,
segment=1., name='encodec_48khz' if pretrained else 'unset')
if pretrained:
state_dict = EncodecModel._get_pretrained(checkpoint_name, repository)
model.load_state_dict(state_dict)
model.eval()
return model
def test():
from itertools import product
import torchaudio
bandwidths = [3, 6, 12, 24]
models = {
'encodec_24khz': EncodecModel.encodec_model_24khz,
'encodec_48khz': EncodecModel.encodec_model_48khz
}
for model_name, bw in product(models.keys(), bandwidths):
model = models[model_name]()
model.set_target_bandwidth(bw)
audio_suffix = model_name.split('_')[1][:3]
wav, sr = torchaudio.load(f"test_{audio_suffix}.wav")
wav = wav[:, :model.sample_rate * 2]
wav_in = wav.unsqueeze(0)
wav_dec = model(wav_in)[0]
assert wav.shape == wav_dec.shape, (wav.shape, wav_dec.shape)
if __name__ == '__main__':
test()
|