Spaces:
Running
Running
File size: 6,329 Bytes
5827423 2c50d95 5827423 2c50d95 a3a0c9b 5827423 2c50d95 5827423 2c50d95 5827423 a3a0c9b 5827423 2c50d95 5827423 2c50d95 5827423 8cf7229 5827423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch.nn as nn
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from inspiremusic.utils.mask import make_pad_mask
from inspiremusic.utils.hinter import hint_once
class QwenEncoder(nn.Module):
def __init__(
self,
input_size: int,
dtype: str = "fp16",
pretrain_path: str = "Qwen/Qwen2.0-0.5B",
trainable: bool = False,
do_fusion_emb: bool = False,
fusion_drop_rate: float = 0.0,
):
super(QwenEncoder, self).__init__()
self.input_size = input_size
self.trainable = trainable
if dtype == "fp16":
self.dtype = torch.float16
elif dtype == "bf16":
self.dtype = torch.bfloat16
else:
self.dtype = torch.float32
self.model = AutoModelForCausalLM.from_pretrained(pretrain_path, device_map="cpu")
self._output_size = self.model.config.hidden_size
self.do_fusion_emb = do_fusion_emb
self.hidden_norm = torch.nn.LayerNorm(self._output_size)
self.fusion_dropout = nn.Dropout(fusion_drop_rate)
if do_fusion_emb:
self.fusion_layer = torch.nn.Linear(self._output_size * 2, self._output_size)
self.emb_norm = torch.nn.LayerNorm(self._output_size)
self.fusion_norm = torch.nn.LayerNorm(self._output_size)
from inspiremusic.transformer.activation import Swish
self.fusion_act = Swish(self)
if not self.trainable:
self.model.eval()
def output_size(self) -> int:
return self._output_size
def forward(
self,
input_ids: torch.Tensor,
ilens: torch.Tensor,
):
device = input_ids.device
input_ids = torch.clamp(input_ids, min=0, max=None)
input_masks = (~make_pad_mask(ilens)).to(device).long()
if not self.trainable:
with torch.no_grad():
model_outputs = self.model(
input_ids=input_ids,
attention_mask=input_masks,
output_hidden_states=True
)
else:
model_outputs = self.model(
input_ids=input_ids,
attention_mask=input_masks,
output_hidden_states=True
)
outs = model_outputs.hidden_states[-1]
outs = self.hidden_norm(outs)
if self.do_fusion_emb:
hint_once("fuse embedding and LM outputs", "fuse_emb")
outs = self.fusion_dropout(self.fusion_act(outs))
emb = model_outputs.hidden_states[0]
emb = self.fusion_dropout(self.fusion_act(self.emb_norm(emb)))
outs = self.fusion_layer(
torch.cat([outs, emb], dim=-1)
)
outs = self.fusion_act(self.fusion_norm(outs))
return outs, ilens
class QwenEmbeddingEncoder(nn.Module):
def __init__(
self,
input_size: int,
dtype: str = "fp16",
pretrain_path: str = "Qwen/Qwen2.0-0.5B",
):
super(QwenEmbeddingEncoder, self).__init__()
self.input_size = input_size
if dtype == "fp16":
self.dtype = torch.float16
elif dtype == "bf16":
self.dtype = torch.bfloat16
else:
self.dtype = torch.float32
from transformers import Qwen2ForCausalLM
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path, device_map="cpu")
self._output_size = self.model.config.hidden_size
def output_size(self) -> int:
return self._output_size
def forward(
self,
input_embeds: torch.Tensor,
ilens: torch.Tensor,
):
input_masks = (~make_pad_mask(ilens)).to(input_embeds.device).long()
outs = self.model(
inputs_embeds=input_embeds,
attention_mask=input_masks,
output_hidden_states=True,
return_dict=True,
)
return outs.hidden_states[-1], input_masks
def forward_one_step(self, xs, masks, cache=None):
outs = self.model(
inputs_embeds=xs,
attention_mask=masks,
output_hidden_states=True,
return_dict=True,
use_cache=True,
past_key_values=cache,
)
xs = outs.hidden_states[-1]
new_cache = outs.past_key_values
return xs, masks, new_cache
class QwenInputOnlyEncoder(nn.Module):
def __init__(
self,
input_size: int,
dtype: str = "fp16",
pretrain_path: str = "Qwen/Qwen2.0-0.5B",
):
super(QwenInputOnlyEncoder, self).__init__()
self.input_size = input_size
if dtype == "fp16":
self.dtype = torch.float16
elif dtype == "bf16":
self.dtype = torch.bfloat16
else:
self.dtype = torch.float32
from transformers import Qwen2ForCausalLM
model = Qwen2ForCausalLM.from_pretrained(pretrain_path, device_map="cpu")
self.embed = model.model.embed_tokens
for p in self.embed.parameters():
p.requires_grad = False
# set text embedding to non-trainable
# self.post_embed = model.model.rotary_emb
self._output_size = model.config.hidden_size
def output_size(self) -> int:
return self._output_size
def forward(
self,
input_ids: torch.Tensor,
ilens: torch.Tensor,
):
input_masks = (~make_pad_mask(ilens)).to(input_ids.device).long()
outs = self.embed(input_ids)
return outs, input_masks
|