File size: 16,307 Bytes
5827423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c50d95
 
5827423
 
 
2c50d95
 
 
 
 
 
 
 
5827423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c50d95
 
 
5827423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c50d95
5827423
 
 
 
 
 
 
 
 
 
 
2c50d95
5827423
2c50d95
5827423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c50d95
5827423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c50d95
5827423
 
 
 
 
 
 
 
 
 
 
 
 
2c50d95
 
 
 
5827423
 
 
 
 
 
 
 
2c50d95
 
5827423
 
2c50d95
5827423
2c50d95
5827423
 
 
2c50d95
5827423
 
 
 
 
 
 
 
2c50d95
5827423
 
 
 
 
 
 
 
 
 
 
 
2c50d95
5827423
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Callable, List, Generator
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
from inspiremusic.utils.common import IGNORE_ID
from inspiremusic.transformer.label_smoothing_loss import LabelSmoothingLoss
from inspiremusic.utils.common import th_accuracy
from torch import Tensor
from math import log
from einops import rearrange, reduce, repeat
import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

class SinusoidalEmbedding(nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.dim = dim

    def forward(self, x: Tensor) -> Tensor:
        device, half_dim = x.device, self.dim // 2
        emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
        return torch.cat((emb.sin(), emb.cos()), dim=-1).to(torch.float16)

class LLM(torch.nn.Module):
    def __init__(
            self,
            text_encoder_input_size: int,
            llm_input_size: int,
            llm_output_size: int,
            audio_token_size: int,
            llm: torch.nn.Module,
            sampling: Callable,
            text_encoder_conf: Dict = None,
            length_normalized_loss: bool = True,
            lsm_weight: float = 0.0,
            frozen_input_embed: bool = False,
            dtype: str = "fp16",
            text_token_size: int = 151643,
            **kwargs,
    ):
        super().__init__()

        if dtype == "fp16":
            self.dtype = torch.float16
        elif dtype == "bf16":
            self.dtype = torch.bfloat16
        else:
            self.dtype = torch.float32

        self.llm_input_size = llm_input_size
        self.audio_token_size = audio_token_size
        # 1. build text token inputs related modules

        if llm is None:
            self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
        else:
            self.text_embedding = llm.model.model.embed_tokens
            if frozen_input_embed:
                print("Freezing input embedding layer")
                for p in self.text_embedding.parameters():
                    p.requires_grad = False
        self.chorus_embedding = torch.nn.Embedding(5, llm_input_size)  # intro, chorus, verse1, verse2 , outro

        self.text_encoder_conf = text_encoder_conf
        self.text_encoder = self.build_encoder(text_encoder_conf)
        self.infer_cfg_ratio = kwargs.get("infer_cfg_ratio", None)
        logging.info(f"infer_cfg_ratio: {self.infer_cfg_ratio}")
        self.train_cfg_ratio = kwargs.get("train_cfg_ratio", None)
        logging.info(f"train_cfg_ratio: {self.train_cfg_ratio}")
        # 2. build audio token language model related modules
        self.sos_eos = 0
        self.task_id = 1

        self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
        self.llm = llm
        self.llm_decoder = nn.Linear(llm_output_size, audio_token_size + 1)
        self.criterion_ce = LabelSmoothingLoss(
                size=audio_token_size + 1,
                padding_idx=IGNORE_ID,
                smoothing=lsm_weight,
                normalize_length=length_normalized_loss,
        )

        # 3. [Optional] build audio token related modules
        self.speech_embedding = torch.nn.Embedding(audio_token_size, llm_input_size)
        self.spk_embed_affine_layer = torch.nn.Linear(192, llm_input_size)
        self.num_codebooks = 4
        # 4. sampling method
        self.sampling = sampling
        self.time_embedding = SinusoidalEmbedding(llm_input_size)

    def cfg_dropout(self, text_token, text_token_len, p):
        # Classifier-Free Guidance Dropout
        B = text_token.size(0)
        num_samples_to_mask = int(p * B)
        if num_samples_to_mask == 0:
            num_samples_to_mask = 1
        indices_to_mask = torch.randperm(B, device=text_token.device)[:num_samples_to_mask]
        text_token[indices_to_mask] = 0
        text_token_len[indices_to_mask] = 0

        return text_token, text_token_len

    def build_encoder(self, encoder_conf=None):
        if encoder_conf is None:
            assert hasattr(self, "encoder_conf"), \
                "function param encoder_conf is None and model doesn't has encoder_conf attribute either."
            encoder_conf = self.encoder_conf

        encoder_name = encoder_conf.pop("name", "transformer")
        model = None

        if "qwen" in encoder_name:
            from inspiremusic.transformer.qwen_encoder import QwenEncoder
            model = QwenEncoder(
                    **encoder_conf,
                    input_size=self.input_size,
            )

        encoder_conf["name"] = encoder_name

        return model

    def encode(self,
            text: torch.Tensor,
            text_lengths: torch.Tensor):
        if self.text_encoder is not None:
            encoder_out, encoder_mask = self.text_encoder(text, text_lengths,
                                                          decoding_chunk_size=1,
                                                          num_decoding_left_chunks=-1)
            encoder_out_lens = encoder_mask.squeeze(1).sum(1)
            encoder_out = self.text_encoder_affine_layer(encoder_out)
        else:
            encoder_out, encoder_out_lens = text, text_lengths
        return encoder_out, encoder_out_lens

    def pad_unpad_sequence(self, sos_eos_emb, embeddings, text_token,
                           text_token_len, task_id_emb, audio_token,
                           audio_token_len, seg_len):
        text_token = unpad_sequence(text_token, text_token_len.cpu(),
                                    batch_first=True)

        audio_token = unpad_sequence(audio_token, audio_token_len.cpu(),
                                     batch_first=True)

        for i in range(len(embeddings)):
            embeddings[i] = unpad_sequence(embeddings[i], seg_len.cpu(), batch_first=True)

        lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0)] + [embedding[i] for embedding in embeddings] + [text_token[i], task_id_emb.squeeze(dim=0), audio_token[i]], dim=0) for i in range(len(text_token))]
        lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
        lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
        return lm_input, lm_input_len

    def forward(
            self,
            batch: dict,
            device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        """
        Args:
            text: (B, L, D)
            text_lengths: (B,)
            audio: (B, T, N) or (B, T)
            audio_lengths: (B,)
        """
        mask = True
        text_token = batch['text_token'].to(device)
        text_token_len = batch['text_token_len'].to(device)
        if "semantic_token" not in batch:
            audio_token = batch['acoustic_token'].to(device)
            audio_token_len = batch['acoustic_token_len'].to(device)
            audio_token = audio_token.view(audio_token.size(0), -1, self.num_codebooks)
            audio_token = audio_token[:, :, 0]
            audio_token_len = (audio_token_len / self.num_codebooks).long()

        else:
            audio_token = batch['semantic_token'].to(device)
            audio_token_len = batch['semantic_token_len'].to(device)

        time_start = batch['time_start'].to(device)
        time_end = batch['time_end'].to(device)
        chorus = batch['chorus'].to(device)
        # 1. encode text_token

        if self.train_cfg_ratio > 0:
            # Classifier-Free Guidance
            text_token, _ = self.cfg_dropout(text_token, text_token_len, self.train_cfg_ratio)

        # 2. Time Embedding & chorus embedding
        text_token = self.text_embedding(text_token)
        text_token, text_token_len = self.encode(text_token, text_token_len)
        if mask:
            time_mask = time_start != -1.0
            seg_len = time_mask.sum(-1)
            time_start = time_start.masked_fill(~time_mask, 0.0)
            time_end = time_end.masked_fill(~time_mask, 0.0)
            chorus = chorus.masked_fill(~time_mask, 0)
            time_start_embed = self.time_embedding(time_start.view(-1)).to(text_token.dtype)
            time_end_embed = self.time_embedding(time_end.view(-1)).to(text_token.dtype)
            time_start_embed = time_start_embed.view(chorus.size(0), chorus.size(1), -1)
            time_end_embed = time_end_embed.view(chorus.size(0), chorus.size(1), -1)
            chorus_embed = self.chorus_embedding(chorus)
            lm_target = [torch.tensor([IGNORE_ID] * (1 + 3 * seg_len[i] + text_token_len[i]) + audio_token[i,:audio_token_len[i]].tolist() + [self.audio_token_size]) for i in range(text_token.size(0))]
        else:
            time_start_embed = self.time_embedding(time_start).to(text_token.dtype)
            time_end_embed = self.time_embedding(time_end).to(text_token.dtype)
            chorus_embed = self.chorus_embedding(chorus)

            lm_target = [torch.tensor([IGNORE_ID] * (4 + text_token_len[i]) + audio_token[i,:audio_token_len[i]].tolist() + [self.audio_token_size]) for i in range(text_token.size(0))]

        lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)

        # 3. eos and task_id
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)

        # 4. encode audio_token
        audio_token = self.speech_embedding(audio_token)

        # 5. unpad and pad
        lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, [time_start_embed, time_end_embed, chorus_embed], text_token, text_token_len, task_id_emb, audio_token, audio_token_len, seg_len)
        # 6. run lm forward
        lm_output, lm_output_mask = self.llm(lm_input.to(self.dtype), lm_input_len.to(device))
        logits = self.llm_decoder(lm_output)
        loss = self.criterion_ce(logits, lm_target)

        acc = th_accuracy(logits.view(-1, self.audio_token_size + 1), lm_target, ignore_label=IGNORE_ID)

        return {'loss': loss, 'acc': acc}

    def sampling_ids(
            self,
            weighted_scores: torch.Tensor,
            decoded_tokens: List,
            ignore_eos: bool = True,
    ):
        top_ids = self.sampling(weighted_scores, decoded_tokens)
        return top_ids

    @torch.inference_mode()
    def inference(
            self,
            text: torch.Tensor,
            text_len: torch.Tensor,
            audio_token: torch.Tensor,
            audio_token_len: torch.Tensor,
            prompt_text: torch.Tensor,
            prompt_text_len: torch.Tensor,
            prompt_audio_token: torch.Tensor,
            prompt_audio_token_len: torch.Tensor,
            embeddings: List,
            duration_to_gen: float = 30,
            task: str = "continuation",
            token_rate: int = 75,
            limit_audio_prompt_len: int = 5,
    ) -> Generator[torch.Tensor, None, None]:
        device = text.device

        if text is not None:
            text = torch.concat([prompt_text, text], dim=1)
            text_len += prompt_text_len
            infer_cfg = self.infer_cfg_ratio >= 0.0
            if infer_cfg:
                text_cfg = self.text_embedding(text.new_zeros(text.shape))
            text = self.text_embedding(text)

            # 1. encode text
            text, text_len = self.encode(text, text_len)

        # 2. encode embedding
        if embeddings is not None:
            time_start, time_end, chorus = embeddings

            if len(chorus.shape) == 1:
                time_start_embed = self.time_embedding(time_start).reshape(1, 1, -1)  # .half()
                time_end_embed = self.time_embedding(time_end).reshape(1, 1, -1)  # .half()
                chorus_embed = self.chorus_embedding(chorus).reshape(1, 1, -1)  # .half()
            else:
                time_start_embed = self.time_embedding(time_start.view(-1)).reshape(1, chorus.size(1), -1)  # .half()
                time_end_embed = self.time_embedding(time_end.view(-1)).reshape(1, chorus.size(1), -1)  # .half()
                chorus_embed = self.chorus_embedding(chorus)  # .half()

        # 3. concat llm_input
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)

        if audio_token_len:
            audio_token = audio_token[:, :(limit_audio_prompt_len * token_rate)]
            audio_token_emb = self.speech_embedding(audio_token)
        else:
            audio_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)

        #if prompt_audio_token_len:
        #    prompt_audio_token_emb = self.speech_embedding(prompt_audio_token)
        #else:
        #    prompt_audio_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
        # Check if removing prompt audio token will fail decoding.

        if task == "continuation":
            lm_input = torch.concat(
                    [sos_eos_emb, time_start_embed, time_end_embed,
                     chorus_embed, text, task_id_emb, audio_token_emb], dim=1)

            if infer_cfg:
                audio_cfg = self.speech_embedding(audio_token.new_zeros(audio_token.shape))
                lm_cf_input = torch.concat([sos_eos_emb, torch.rand_like(time_start_embed), torch.rand_like(time_end_embed), torch.rand_like(chorus_embed), text_cfg, task_id_emb, audio_cfg], dim=1)
                lm_input = torch.cat([lm_input, lm_cf_input], 0)
        else:
            lm_input = torch.concat([sos_eos_emb, time_start_embed, time_end_embed, chorus_embed, text, task_id_emb], dim=1)
            if infer_cfg:
                lm_cf_input = torch.concat([sos_eos_emb, torch.rand_like(time_start_embed), torch.rand_like(time_end_embed), torch.rand_like(chorus_embed), text_cfg, task_id_emb], dim=1)
                lm_input = torch.cat([lm_input, lm_cf_input], 0)

        # 4. cal min/max_length
        min_len = int(0.9 * duration_to_gen * token_rate)
        max_len = duration_to_gen * token_rate

        # 5. step by step decode
        out_tokens = []
        offset = 0
        state = None

        for i in range(int(max_len)):
            y_pred, _, state = self.llm.forward_one_step(lm_input.to(self.dtype), torch.ones(lm_input.shape[0], lm_input.shape[1], device=lm_input.device).to(torch.bool), cache=state)
            logits = self.llm_decoder(y_pred[:, -1])
            if infer_cfg:
                # perform context free guidance
                logits_cf = logits[1]
                logits = logits[0]
                infer_cfg_ratio = self.infer_cfg_ratio
                logits = infer_cfg_ratio * logits + (1 - infer_cfg_ratio) * logits_cf

            logp = logits.log_softmax(dim=-1)
            logp = logp.squeeze(dim=0)

            if i < int(min_len):
                logp[self.audio_token_size] = torch.tensor(float('-inf'), dtype=self.dtype)

            top_ids = self.sampling_ids(logp, out_tokens, ignore_eos=i < min_len).item()

            if top_ids == self.audio_token_size:
                break

            # # in stream mode, yield token one by one

            yield torch.tensor([[top_ids]], dtype=torch.int64, device=device)
            out_tokens.append(top_ids)
            offset += lm_input.size(1)
            lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
            if infer_cfg:
                lm_input = lm_input.repeat(2, 1, 1)