Spaces:
Running
Running
File size: 16,307 Bytes
5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 2c50d95 5827423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Callable, List, Generator
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
from inspiremusic.utils.common import IGNORE_ID
from inspiremusic.transformer.label_smoothing_loss import LabelSmoothingLoss
from inspiremusic.utils.common import th_accuracy
from torch import Tensor
from math import log
from einops import rearrange, reduce, repeat
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class SinusoidalEmbedding(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.dim = dim
def forward(self, x: Tensor) -> Tensor:
device, half_dim = x.device, self.dim // 2
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
return torch.cat((emb.sin(), emb.cos()), dim=-1).to(torch.float16)
class LLM(torch.nn.Module):
def __init__(
self,
text_encoder_input_size: int,
llm_input_size: int,
llm_output_size: int,
audio_token_size: int,
llm: torch.nn.Module,
sampling: Callable,
text_encoder_conf: Dict = None,
length_normalized_loss: bool = True,
lsm_weight: float = 0.0,
frozen_input_embed: bool = False,
dtype: str = "fp16",
text_token_size: int = 151643,
**kwargs,
):
super().__init__()
if dtype == "fp16":
self.dtype = torch.float16
elif dtype == "bf16":
self.dtype = torch.bfloat16
else:
self.dtype = torch.float32
self.llm_input_size = llm_input_size
self.audio_token_size = audio_token_size
# 1. build text token inputs related modules
if llm is None:
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
else:
self.text_embedding = llm.model.model.embed_tokens
if frozen_input_embed:
print("Freezing input embedding layer")
for p in self.text_embedding.parameters():
p.requires_grad = False
self.chorus_embedding = torch.nn.Embedding(5, llm_input_size) # intro, chorus, verse1, verse2 , outro
self.text_encoder_conf = text_encoder_conf
self.text_encoder = self.build_encoder(text_encoder_conf)
self.infer_cfg_ratio = kwargs.get("infer_cfg_ratio", None)
logging.info(f"infer_cfg_ratio: {self.infer_cfg_ratio}")
self.train_cfg_ratio = kwargs.get("train_cfg_ratio", None)
logging.info(f"train_cfg_ratio: {self.train_cfg_ratio}")
# 2. build audio token language model related modules
self.sos_eos = 0
self.task_id = 1
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
self.llm = llm
self.llm_decoder = nn.Linear(llm_output_size, audio_token_size + 1)
self.criterion_ce = LabelSmoothingLoss(
size=audio_token_size + 1,
padding_idx=IGNORE_ID,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
# 3. [Optional] build audio token related modules
self.speech_embedding = torch.nn.Embedding(audio_token_size, llm_input_size)
self.spk_embed_affine_layer = torch.nn.Linear(192, llm_input_size)
self.num_codebooks = 4
# 4. sampling method
self.sampling = sampling
self.time_embedding = SinusoidalEmbedding(llm_input_size)
def cfg_dropout(self, text_token, text_token_len, p):
# Classifier-Free Guidance Dropout
B = text_token.size(0)
num_samples_to_mask = int(p * B)
if num_samples_to_mask == 0:
num_samples_to_mask = 1
indices_to_mask = torch.randperm(B, device=text_token.device)[:num_samples_to_mask]
text_token[indices_to_mask] = 0
text_token_len[indices_to_mask] = 0
return text_token, text_token_len
def build_encoder(self, encoder_conf=None):
if encoder_conf is None:
assert hasattr(self, "encoder_conf"), \
"function param encoder_conf is None and model doesn't has encoder_conf attribute either."
encoder_conf = self.encoder_conf
encoder_name = encoder_conf.pop("name", "transformer")
model = None
if "qwen" in encoder_name:
from inspiremusic.transformer.qwen_encoder import QwenEncoder
model = QwenEncoder(
**encoder_conf,
input_size=self.input_size,
)
encoder_conf["name"] = encoder_name
return model
def encode(self,
text: torch.Tensor,
text_lengths: torch.Tensor):
if self.text_encoder is not None:
encoder_out, encoder_mask = self.text_encoder(text, text_lengths,
decoding_chunk_size=1,
num_decoding_left_chunks=-1)
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
encoder_out = self.text_encoder_affine_layer(encoder_out)
else:
encoder_out, encoder_out_lens = text, text_lengths
return encoder_out, encoder_out_lens
def pad_unpad_sequence(self, sos_eos_emb, embeddings, text_token,
text_token_len, task_id_emb, audio_token,
audio_token_len, seg_len):
text_token = unpad_sequence(text_token, text_token_len.cpu(),
batch_first=True)
audio_token = unpad_sequence(audio_token, audio_token_len.cpu(),
batch_first=True)
for i in range(len(embeddings)):
embeddings[i] = unpad_sequence(embeddings[i], seg_len.cpu(), batch_first=True)
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0)] + [embedding[i] for embedding in embeddings] + [text_token[i], task_id_emb.squeeze(dim=0), audio_token[i]], dim=0) for i in range(len(text_token))]
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
return lm_input, lm_input_len
def forward(
self,
batch: dict,
device: torch.device,
) -> Dict[str, Optional[torch.Tensor]]:
"""
Args:
text: (B, L, D)
text_lengths: (B,)
audio: (B, T, N) or (B, T)
audio_lengths: (B,)
"""
mask = True
text_token = batch['text_token'].to(device)
text_token_len = batch['text_token_len'].to(device)
if "semantic_token" not in batch:
audio_token = batch['acoustic_token'].to(device)
audio_token_len = batch['acoustic_token_len'].to(device)
audio_token = audio_token.view(audio_token.size(0), -1, self.num_codebooks)
audio_token = audio_token[:, :, 0]
audio_token_len = (audio_token_len / self.num_codebooks).long()
else:
audio_token = batch['semantic_token'].to(device)
audio_token_len = batch['semantic_token_len'].to(device)
time_start = batch['time_start'].to(device)
time_end = batch['time_end'].to(device)
chorus = batch['chorus'].to(device)
# 1. encode text_token
if self.train_cfg_ratio > 0:
# Classifier-Free Guidance
text_token, _ = self.cfg_dropout(text_token, text_token_len, self.train_cfg_ratio)
# 2. Time Embedding & chorus embedding
text_token = self.text_embedding(text_token)
text_token, text_token_len = self.encode(text_token, text_token_len)
if mask:
time_mask = time_start != -1.0
seg_len = time_mask.sum(-1)
time_start = time_start.masked_fill(~time_mask, 0.0)
time_end = time_end.masked_fill(~time_mask, 0.0)
chorus = chorus.masked_fill(~time_mask, 0)
time_start_embed = self.time_embedding(time_start.view(-1)).to(text_token.dtype)
time_end_embed = self.time_embedding(time_end.view(-1)).to(text_token.dtype)
time_start_embed = time_start_embed.view(chorus.size(0), chorus.size(1), -1)
time_end_embed = time_end_embed.view(chorus.size(0), chorus.size(1), -1)
chorus_embed = self.chorus_embedding(chorus)
lm_target = [torch.tensor([IGNORE_ID] * (1 + 3 * seg_len[i] + text_token_len[i]) + audio_token[i,:audio_token_len[i]].tolist() + [self.audio_token_size]) for i in range(text_token.size(0))]
else:
time_start_embed = self.time_embedding(time_start).to(text_token.dtype)
time_end_embed = self.time_embedding(time_end).to(text_token.dtype)
chorus_embed = self.chorus_embedding(chorus)
lm_target = [torch.tensor([IGNORE_ID] * (4 + text_token_len[i]) + audio_token[i,:audio_token_len[i]].tolist() + [self.audio_token_size]) for i in range(text_token.size(0))]
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
# 3. eos and task_id
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
# 4. encode audio_token
audio_token = self.speech_embedding(audio_token)
# 5. unpad and pad
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, [time_start_embed, time_end_embed, chorus_embed], text_token, text_token_len, task_id_emb, audio_token, audio_token_len, seg_len)
# 6. run lm forward
lm_output, lm_output_mask = self.llm(lm_input.to(self.dtype), lm_input_len.to(device))
logits = self.llm_decoder(lm_output)
loss = self.criterion_ce(logits, lm_target)
acc = th_accuracy(logits.view(-1, self.audio_token_size + 1), lm_target, ignore_label=IGNORE_ID)
return {'loss': loss, 'acc': acc}
def sampling_ids(
self,
weighted_scores: torch.Tensor,
decoded_tokens: List,
ignore_eos: bool = True,
):
top_ids = self.sampling(weighted_scores, decoded_tokens)
return top_ids
@torch.inference_mode()
def inference(
self,
text: torch.Tensor,
text_len: torch.Tensor,
audio_token: torch.Tensor,
audio_token_len: torch.Tensor,
prompt_text: torch.Tensor,
prompt_text_len: torch.Tensor,
prompt_audio_token: torch.Tensor,
prompt_audio_token_len: torch.Tensor,
embeddings: List,
duration_to_gen: float = 30,
task: str = "continuation",
token_rate: int = 75,
limit_audio_prompt_len: int = 5,
) -> Generator[torch.Tensor, None, None]:
device = text.device
if text is not None:
text = torch.concat([prompt_text, text], dim=1)
text_len += prompt_text_len
infer_cfg = self.infer_cfg_ratio >= 0.0
if infer_cfg:
text_cfg = self.text_embedding(text.new_zeros(text.shape))
text = self.text_embedding(text)
# 1. encode text
text, text_len = self.encode(text, text_len)
# 2. encode embedding
if embeddings is not None:
time_start, time_end, chorus = embeddings
if len(chorus.shape) == 1:
time_start_embed = self.time_embedding(time_start).reshape(1, 1, -1) # .half()
time_end_embed = self.time_embedding(time_end).reshape(1, 1, -1) # .half()
chorus_embed = self.chorus_embedding(chorus).reshape(1, 1, -1) # .half()
else:
time_start_embed = self.time_embedding(time_start.view(-1)).reshape(1, chorus.size(1), -1) # .half()
time_end_embed = self.time_embedding(time_end.view(-1)).reshape(1, chorus.size(1), -1) # .half()
chorus_embed = self.chorus_embedding(chorus) # .half()
# 3. concat llm_input
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
if audio_token_len:
audio_token = audio_token[:, :(limit_audio_prompt_len * token_rate)]
audio_token_emb = self.speech_embedding(audio_token)
else:
audio_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
#if prompt_audio_token_len:
# prompt_audio_token_emb = self.speech_embedding(prompt_audio_token)
#else:
# prompt_audio_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
# Check if removing prompt audio token will fail decoding.
if task == "continuation":
lm_input = torch.concat(
[sos_eos_emb, time_start_embed, time_end_embed,
chorus_embed, text, task_id_emb, audio_token_emb], dim=1)
if infer_cfg:
audio_cfg = self.speech_embedding(audio_token.new_zeros(audio_token.shape))
lm_cf_input = torch.concat([sos_eos_emb, torch.rand_like(time_start_embed), torch.rand_like(time_end_embed), torch.rand_like(chorus_embed), text_cfg, task_id_emb, audio_cfg], dim=1)
lm_input = torch.cat([lm_input, lm_cf_input], 0)
else:
lm_input = torch.concat([sos_eos_emb, time_start_embed, time_end_embed, chorus_embed, text, task_id_emb], dim=1)
if infer_cfg:
lm_cf_input = torch.concat([sos_eos_emb, torch.rand_like(time_start_embed), torch.rand_like(time_end_embed), torch.rand_like(chorus_embed), text_cfg, task_id_emb], dim=1)
lm_input = torch.cat([lm_input, lm_cf_input], 0)
# 4. cal min/max_length
min_len = int(0.9 * duration_to_gen * token_rate)
max_len = duration_to_gen * token_rate
# 5. step by step decode
out_tokens = []
offset = 0
state = None
for i in range(int(max_len)):
y_pred, _, state = self.llm.forward_one_step(lm_input.to(self.dtype), torch.ones(lm_input.shape[0], lm_input.shape[1], device=lm_input.device).to(torch.bool), cache=state)
logits = self.llm_decoder(y_pred[:, -1])
if infer_cfg:
# perform context free guidance
logits_cf = logits[1]
logits = logits[0]
infer_cfg_ratio = self.infer_cfg_ratio
logits = infer_cfg_ratio * logits + (1 - infer_cfg_ratio) * logits_cf
logp = logits.log_softmax(dim=-1)
logp = logp.squeeze(dim=0)
if i < int(min_len):
logp[self.audio_token_size] = torch.tensor(float('-inf'), dtype=self.dtype)
top_ids = self.sampling_ids(logp, out_tokens, ignore_eos=i < min_len).item()
if top_ids == self.audio_token_size:
break
# # in stream mode, yield token one by one
yield torch.tensor([[top_ids]], dtype=torch.int64, device=device)
out_tokens.append(top_ids)
offset += lm_input.size(1)
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
if infer_cfg:
lm_input = lm_input.repeat(2, 1, 1)
|