Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from PIL import Image | |
from torchvision import transforms | |
from model_loader import load_model | |
from index_to_attr import index_to_attr | |
# Modell laden | |
model = load_model("model/AttrPredModel_StateDict.pth") | |
# taskName pro Index extrahieren | |
def get_task_map(index_to_attr): | |
task_map = {} | |
for idx, desc in index_to_attr.items(): | |
if "(" in desc and ")" in desc: | |
task = desc.split("(")[-1].split(")")[0] | |
task_map[idx] = task | |
return task_map | |
task_map = get_task_map(index_to_attr) | |
# Bildverarbeitungspipeline | |
preprocess = transforms.Compose([ | |
transforms.Resize((512, 512)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.6765, 0.6347, 0.6207], | |
std=[0.3284, 0.3371, 0.3379]) | |
]) | |
# Inferenz-Funktion mit Markierung für unsichere Kategorien | |
def predict(image): | |
image = image.convert("RGB") | |
input_tensor = preprocess(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_tensor) | |
probs = torch.sigmoid(output).squeeze().numpy() | |
result = {} | |
threshold = 0.5 | |
top_per_task = {} | |
for idx, score in enumerate(probs): | |
task = task_map.get(idx, "unknown") | |
if task not in top_per_task or score > top_per_task[task][1]: | |
top_per_task[task] = (idx, score) | |
for task, (idx, score) in top_per_task.items(): | |
label = index_to_attr.get(idx, f"Unknown ({idx})").split(" (")[0] | |
result[task] = { | |
"label": label, | |
"score": round(float(score), 4), | |
"confidence": "low" if score < threshold else "high" | |
} | |
return result | |
# Gradio Interface – stabil und einfach | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil", label="Upload image"), | |
outputs="json", | |
title="Fashion Attribute Predictor (mit Confidence)", | |
description="Zeigt pro Attributgruppe die wahrscheinlichste Vorhersage + Confidence ('high' / 'low')." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |