# fashionclip_app.py import gradio as gr from PIL import Image import torch from transformers import CLIPProcessor, CLIPModel # Lade das Modell und den Prozessor model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip") processor = CLIPProcessor.from_pretrained("patrickjohncyh/fashion-clip") # Prompts für jede Merkmalsgruppe category_prompts = ["a t-shirt", "a long-sleeved shirt", "a hoodie", "a sweatshirt", "a pullover", "a tank top"] color_prompts = ["a red garment", "a blue garment", "a black garment", "a white garment", "a green garment", "a yellow garment", "a gray garment", "a brown garment", "a pink garment", "a purple garment"] pattern_prompts = ["a plain shirt", "a striped shirt", "a floral shirt", "a checked shirt", "a dotted shirt", "an abstract patterned shirt"] fit_prompts = ["a slim fit shirt", "an oversized top", "a regular fit shirt", "a cropped shirt", "a shirt with a crew neck", "a shirt with a v-neck", "a shirt with a round neckline"] # Hilfsfunktion: finde das passendste Prompt für eine Gruppe def predict_best_prompt(image, prompts): print(f"[DEBUG] Image type: {type(image)}, Prompt count: {len(prompts)}") inputs = processor(text=prompts, images=[image], return_tensors="pt", padding=True) with torch.no_grad(): outputs = model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1).squeeze().tolist() best_idx = torch.tensor(probs).argmax().item() return prompts[best_idx], probs[best_idx] # Hauptfunktion für die App def analyze_image(image): if image is None: return "⚠️ Please upload or take a picture first." results = {} results["Category"], cat_score = predict_best_prompt(image, category_prompts) results["Color"], color_score = predict_best_prompt(image, color_prompts) results["Pattern"], pattern_score = predict_best_prompt(image, pattern_prompts) results["Fit"], fit_score = predict_best_prompt(image, fit_prompts) return f""" Category: {results['Category']} ({cat_score:.2f})\n Color: {results['Color']} ({color_score:.2f})\n Pattern: {results['Pattern']} ({pattern_score:.2f})\n Fit: {results['Fit']} ({fit_score:.2f}) """ # Gradio UI erstellen iface = gr.Interface( fn=analyze_image, inputs=gr.Image(type="pil", label="Upload or take a picture", sources=["upload", "webcam"]), outputs="text", title="Fashion Attribute Predictor (Prototype 2)", description="Upload or capture an image of a t-shirt or pullover. The model predicts category, color, pattern, and fit using FashionCLIP." ) # App starten if __name__ == "__main__": iface.launch()