Spaces:
Sleeping
Sleeping
File size: 63,165 Bytes
d785968 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 |
import time
import logging
import argparse
import os
import json
import random
import re
import uuid
from collections import defaultdict
from datetime import datetime
from typing import List, Dict, Any, Optional, Union, Tuple
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import (
TimeoutException, NoSuchElementException, WebDriverException
)
import gradio as gr
import pandas as pd
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# Predefined advertisers list
ADVERTISERS = [
{"id": "AR10051102910143528961", "name": "Theory Sabers"},
{"id": "AR12645693856247971841", "name": "Artsabers"},
{"id": "AR07257050693515608065", "name": "bmlightsabers"},
{"id": "AR01506694249926623233", "name": "Padawan Outpost Ltd"},
{"id": "AR10584025853845307393", "name": "GalaxySabers"},
{"id": "AR16067963414479110145", "name": "nsabers"},
{"id": "AR12875519274243850241", "name": "es-sabers"},
{"id": "AR05144647067079016449", "name": "Ultra Sabers"},
{"id": "AR15581800501283389441", "name": "SuperNeox"},
{"id": "AR06148907109187584001", "name": "Sabertrio"}
]
#####################################
### FACEBOOK SCRAPER SECTION #######
#####################################
# Constants for Facebook Scraper
FB_DEFAULT_TIMEOUT = 60 # seconds
FB_MIN_WAIT_TIME = 1 # minimum seconds for random waits
FB_MAX_WAIT_TIME = 3 # maximum seconds for random waits
FB_MAX_SCROLL_ATTEMPTS = 5 # maximum number of scroll attempts
FB_SELECTOR_HISTORY_FILE = "fb_selector_stats.json" # File to store selector success stats
# User agents for rotation
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.0 Safari/605.1.15",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36 Edg/122.0.0.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/118.0"
]
# Viewport sizes for randomization
VIEWPORT_SIZES = [
(1366, 768),
(1920, 1080),
(1536, 864),
(1440, 900)
]
class SelectorStats:
"""Class to track and optimize selector performance"""
def __init__(self, file_path=FB_SELECTOR_HISTORY_FILE):
self.file_path = file_path
self.stats = self._load_stats()
def _load_stats(self) -> Dict:
"""Load stats from file or initialize if not exists"""
if os.path.exists(self.file_path):
try:
with open(self.file_path, 'r') as f:
return json.load(f)
except (json.JSONDecodeError, IOError) as e:
logger.warning(f"Error loading selector stats: {e}, initializing new stats")
# Initialize structure for platform stats
return {
"facebook": {"selectors": {}, "last_updated": datetime.now().isoformat()}
}
def update_selector_success(self, selector: str, count: int = 1) -> None:
"""Record successful use of a selector"""
platform = "facebook" # Only using Facebook for this version
if platform not in self.stats:
self.stats[platform] = {"selectors": {}, "last_updated": datetime.now().isoformat()}
if selector not in self.stats[platform]["selectors"]:
self.stats[platform]["selectors"][selector] = {"successes": 0, "attempts": 0}
self.stats[platform]["selectors"][selector]["successes"] += count
self.stats[platform]["selectors"][selector]["attempts"] += 1
self.stats[platform]["last_updated"] = datetime.now().isoformat()
# Save after each update
self._save_stats()
def update_selector_attempt(self, selector: str) -> None:
"""Record attempt to use a selector regardless of success"""
platform = "facebook" # Only using Facebook for this version
if platform not in self.stats:
self.stats[platform] = {"selectors": {}, "last_updated": datetime.now().isoformat()}
if selector not in self.stats[platform]["selectors"]:
self.stats[platform]["selectors"][selector] = {"successes": 0, "attempts": 0}
self.stats[platform]["selectors"][selector]["attempts"] += 1
self.stats[platform]["last_updated"] = datetime.now().isoformat()
# Don't save on every attempt to reduce disk I/O
def get_best_selectors(self, min_attempts: int = 3, max_count: int = 10) -> List[str]:
"""Get the best performing selectors for Facebook"""
platform = "facebook" # Only using Facebook for this version
if platform not in self.stats:
return []
selectors = []
for selector, data in self.stats[platform]["selectors"].items():
if data["attempts"] >= min_attempts:
success_rate = data["successes"] / data["attempts"] if data["attempts"] > 0 else 0
selectors.append((selector, success_rate))
# Sort by success rate (descending)
selectors.sort(key=lambda x: x[1], reverse=True)
# Return top N selectors
return [s[0] for s in selectors[:max_count]]
def _save_stats(self) -> None:
"""Save stats to file"""
try:
with open(self.file_path, 'w') as f:
json.dump(self.stats, f, indent=2)
except IOError as e:
logger.error(f"Error saving selector stats: {e}")
class FacebookAdsScraper:
def __init__(self, headless=True, debug_mode=False):
"""Initialize the ads scraper with browser configuration"""
self.debug_mode = debug_mode
self.headless = headless
self.driver = self._setup_driver(headless)
# Initialize selector stats tracker
self.selector_stats = SelectorStats()
# Track navigation history for smart retry
self.navigation_history = []
# Track success/failure for self-healing
self.success_rate = defaultdict(lambda: {"success": 0, "failure": 0})
# Generate a session ID for this scraping session
self.session_id = str(uuid.uuid4())[:8]
def _setup_driver(self, headless):
"""Set up and configure the Chrome WebDriver with anti-detection measures"""
chrome_options = Options()
if headless:
chrome_options.add_argument("--headless")
# Select a random user agent
user_agent = random.choice(USER_AGENTS)
chrome_options.add_argument(f"--user-agent={user_agent}")
logger.info(f"Using user agent: {user_agent}")
# Select a random viewport size
viewport_width, viewport_height = random.choice(VIEWPORT_SIZES)
chrome_options.add_argument(f"--window-size={viewport_width},{viewport_height}")
logger.info(f"Using viewport size: {viewport_width}x{viewport_height}")
# Add common options to avoid detection
chrome_options.add_argument("--disable-blink-features=AutomationControlled")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
chrome_options.add_argument("--disable-gpu")
chrome_options.add_argument("--start-maximized")
chrome_options.add_argument("--enable-unsafe-swiftshader")
# Performance improvements
chrome_options.add_argument("--disable-extensions")
chrome_options.add_argument("--disable-notifications")
chrome_options.add_argument("--blink-settings=imagesEnabled=true")
# Add experimental options to avoid detection
chrome_options.add_experimental_option("excludeSwitches", ["enable-automation"])
chrome_options.add_experimental_option("useAutomationExtension", False)
# Additional preferences to improve performance
chrome_options.add_experimental_option("prefs", {
"profile.default_content_setting_values.notifications": 2,
"profile.managed_default_content_settings.images": 1,
"profile.managed_default_content_settings.cookies": 1,
# Add some randomness to the profile
"profile.default_content_setting_values.plugins": random.randint(1, 3),
"profile.default_content_setting_values.popups": random.randint(1, 2)
})
try:
# Try to create driver with service for newer Selenium versions
service = Service()
driver = webdriver.Chrome(service=service, options=chrome_options)
# Execute CDP commands to avoid detection (works in newer Chrome versions)
driver.execute_cdp_cmd("Page.addScriptToEvaluateOnNewDocument", {
"source": """
Object.defineProperty(navigator, 'webdriver', {
get: () => undefined
});
// Overwrite the languages with random order
Object.defineProperty(navigator, 'languages', {
get: () => ['en-US', 'en', 'de'].sort(() => 0.5 - Math.random())
});
// Modify plugins length
Object.defineProperty(navigator, 'plugins', {
get: () => {
// Randomize plugins length between 3 and 7
const len = Math.floor(Math.random() * 5) + 3;
const plugins = { length: len };
for (let i = 0; i < len; i++) {
plugins[i] = {
name: ['Flash', 'Chrome PDF Plugin', 'Native Client', 'Chrome PDF Viewer'][Math.floor(Math.random() * 4)],
filename: ['internal-pdf-viewer', 'mhjfbmdgcfjbbpaeojofohoefgiehjai', 'internal-nacl-plugin'][Math.floor(Math.random() * 3)]
};
}
return plugins;
}
});
"""
})
except TypeError:
# Fallback for older Selenium versions
driver = webdriver.Chrome(options=chrome_options)
except Exception as e:
# If there's an issue with CDP, continue anyway
logger.warning(f"CDP command failed, continuing: {e}")
driver = webdriver.Chrome(options=chrome_options)
# Set default timeout
driver.set_page_load_timeout(FB_DEFAULT_TIMEOUT)
return driver
def random_wait(self, min_time=None, max_time=None):
"""Wait for a random amount of time to simulate human behavior"""
min_time = min_time or FB_MIN_WAIT_TIME
max_time = max_time or FB_MAX_WAIT_TIME
wait_time = random.uniform(min_time, max_time)
time.sleep(wait_time)
return wait_time
def human_like_scroll(self, scroll_attempts=None):
"""Scroll down the page in a human-like way"""
attempts = scroll_attempts or random.randint(3, FB_MAX_SCROLL_ATTEMPTS)
# Get page height before scrolling
initial_height = self.driver.execute_script("return document.body.scrollHeight")
for i in range(attempts):
# Calculate a random scroll amount (25-90% of viewport)
scroll_percent = random.uniform(0.25, 0.9)
viewport_height = self.driver.execute_script("return window.innerHeight")
scroll_amount = int(viewport_height * scroll_percent)
# Scroll with a random speed
scroll_steps = random.randint(5, 15)
current_position = self.driver.execute_script("return window.pageYOffset")
target_position = current_position + scroll_amount
for step in range(scroll_steps):
# Calculate next position with easing
t = (step + 1) / scroll_steps
# Ease in-out function
factor = t * t * (3.0 - 2.0 * t)
next_position = current_position + (target_position - current_position) * factor
self.driver.execute_script(f"window.scrollTo(0, {next_position})")
time.sleep(random.uniform(0.01, 0.05))
# Occasionally pause longer as if reading content
if random.random() < 0.3: # 30% chance to pause
self.random_wait(1.5, 3.5)
else:
self.random_wait(0.5, 1.5)
# Log progress
logger.info(f"Human-like scroll {i + 1}/{attempts} completed")
# Check if we've reached the bottom of the page
new_height = self.driver.execute_script("return document.body.scrollHeight")
if new_height == initial_height and i > 1:
# We haven't loaded new content after a couple of scrolls
# Do one big scroll to the bottom to trigger any lazy loading
self.driver.execute_script("window.scrollTo(0, document.body.scrollHeight)")
self.random_wait()
initial_height = new_height
def simulate_human_behavior(self):
"""Simulate random human-like interactions with the page"""
# Random chance to move the mouse around
if random.random() < 0.7: # 70% chance
try:
# Find a random element to hover over
elements = self.driver.find_elements(By.CSS_SELECTOR, "a, button, input, div")
if elements:
element = random.choice(elements)
ActionChains(self.driver).move_to_element(element).perform()
self.random_wait(0.2, 1.0)
except:
# Ignore any errors, this is just for randomness
pass
# Random chance to click somewhere non-interactive
if random.random() < 0.2: # 20% chance
try:
# Find a safe area to click (like a paragraph or heading)
safe_elements = self.driver.find_elements(By.CSS_SELECTOR, "p, h1, h2, h3, h4, span")
if safe_elements:
safe_element = random.choice(safe_elements)
ActionChains(self.driver).move_to_element(safe_element).click().perform()
self.random_wait(0.2, 1.0)
except:
# Ignore any errors, this is just for randomness
pass
def check_headless_visibility(self):
"""
Check if elements are visible in headless mode
Returns True if everything is working properly
"""
if not self.headless:
# If not in headless mode, no need to check
return True
logger.info("Performing headless visibility check...")
# Use a simpler page for testing interactivity
test_url = "https://www.example.com"
try:
self.driver.get(test_url)
# Just check if the page loads at all - don't try to interact with elements
WebDriverWait(self.driver, 10).until(
EC.presence_of_element_located((By.TAG_NAME, "body"))
)
logger.info("Headless check passed: Page loaded successfully")
return True
except Exception as e:
logger.error(f"Headless check failed: {e}")
# Try switching to non-headless mode
logger.info("Switching to non-headless mode...")
self.driver.quit()
self.headless = False
self.driver = self._setup_driver(headless=False)
return True # Continue without rechecking
def fetch_facebook_ads(self, query):
"""Fetch ads from Facebook's Ad Library with anti-detection measures"""
ads_data = []
base_url = "https://www.facebook.com/ads/library/"
logger.info(f"Fetching Facebook ads for {query}")
try:
# Add some randomness to URL parameters
params = {
"active_status": "all",
"ad_type": "all",
"country": "ALL",
"q": query,
# Random parameters to avoid fingerprinting
"_": int(time.time() * 1000),
"session_id": self.session_id
}
# Construct URL with parameters
url = base_url + "?" + "&".join(f"{k}={v}" for k, v in params.items())
logger.info(f"Navigating to Facebook URL: {url}")
# Navigate to the URL
self.driver.get(url)
# Wait for page to initially load
try:
WebDriverWait(self.driver, FB_DEFAULT_TIMEOUT).until(
EC.any_of(
EC.presence_of_element_located((By.CSS_SELECTOR, "div[role='main']")),
EC.presence_of_element_located((By.TAG_NAME, "body"))
)
)
except TimeoutException:
logger.warning("Timeout waiting for Facebook page to load initially, continuing anyway")
# Human-like scrolling to trigger lazy loading
self.human_like_scroll()
# Simulate human behavior
self.simulate_human_behavior()
# Save debug data at this point
if self.debug_mode:
self._save_debug_data("facebook_after_scroll", query)
# Find ad elements using self-healing selectors
ad_elements = self._find_facebook_ad_elements()
if not ad_elements:
logger.info("No Facebook ads found")
if self.debug_mode:
self._save_debug_data("facebook_no_ads", query)
# Return placeholder data as fallback
return self._generate_placeholder_facebook_data(query)
# Process the found ad elements
for i, ad in enumerate(ad_elements[:10]): # Limit to 10 ads for performance
try:
ad_data = {
"platform": "Facebook",
"query": query,
"timestamp": datetime.now().isoformat(),
"index": i + 1,
"session_id": self.session_id
}
# Extract data using smarter methods
full_text = ad.text.strip()
# Log first ad text for debugging
if i == 0:
logger.info(f"First Facebook ad full text (first 150 chars): {full_text[:150]}...")
# Smart data extraction
extracted_data = self._extract_facebook_ad_data(ad, full_text)
# Merge extracted data
ad_data.update(extracted_data)
# Add fallback values if needed
if "advertiser" not in ad_data or not ad_data["advertiser"]:
ad_data["advertiser"] = "Unknown Advertiser"
if "text" not in ad_data or not ad_data["text"]:
ad_data["text"] = "Ad content not available"
ads_data.append(ad_data)
except Exception as e:
logger.warning(f"Error processing Facebook ad {i + 1}: {e}")
return ads_data if ads_data else self._generate_placeholder_facebook_data(query)
except Exception as e:
logger.error(f"Error fetching Facebook ads: {e}")
if self.debug_mode:
self._save_debug_data("facebook_error", query)
return self._generate_placeholder_facebook_data(query)
def _find_facebook_ad_elements(self):
"""Find Facebook ad elements using a self-healing selector strategy"""
# Historical best performers
historical_best = self.selector_stats.get_best_selectors()
# Base selectors
base_selectors = [
"div[class*='_7jvw']",
"div[data-testid='ad_library_card']",
"div[class*='AdLibraryCard']",
"div.AdLibraryCard",
"div[class*='adCard']",
"div[class*='ad_card']"
]
# Combine selectors, prioritizing historical best
combined_selectors = historical_best + [s for s in base_selectors if s not in historical_best]
# Try each selector
for selector in combined_selectors:
try:
# Record attempt
self.selector_stats.update_selector_attempt(selector)
elements = self.driver.find_elements(By.CSS_SELECTOR, selector)
if elements:
logger.info(f"Found {len(elements)} Facebook ads using selector: {selector}")
# Record success
self.selector_stats.update_selector_success(selector, len(elements))
return elements
except Exception as e:
logger.debug(f"Facebook selector {selector} failed: {e}")
# No elements found with standard selectors, try a more aggressive approach
try:
# Look for text patterns that typically appear in ads
patterns = [
"//div[contains(., 'Library ID:')]",
"//div[contains(., 'Sponsored')]",
"//div[contains(., 'Active')][contains(., 'Library ID')]",
"//div[contains(., 'Inactive')][contains(., 'Library ID')]"
]
for pattern in patterns:
elements = self.driver.find_elements(By.XPATH, pattern)
if elements:
ad_containers = []
for element in elements:
try:
# Try to find containing card by navigating up
container = element
for _ in range(5): # Try up to 5 levels up
if container.get_attribute("class") and "card" in container.get_attribute(
"class").lower():
ad_containers.append(container)
break
container = container.find_element(By.XPATH, "..")
except:
continue
if ad_containers:
logger.info(f"Found {len(ad_containers)} Facebook ads using text pattern approach")
# Record this special method
self.selector_stats.update_selector_success("text_pattern_method", len(ad_containers))
return ad_containers
except Exception as e:
logger.debug(f"Facebook text pattern approach failed: {e}")
return []
def _extract_facebook_ad_data(self, ad_element, full_text):
"""Extract data from Facebook ad using multiple intelligent methods"""
extracted_data = {}
# Process text content if available
if full_text:
# Split into lines
lines = full_text.split('\n')
# Check for status (Active/Inactive)
if lines and lines[0] in ["Active", "Inactive"]:
extracted_data["status"] = lines[0]
# Look for advertiser - typically after "See ad details"
for i, line in enumerate(lines):
if "See ad details" in line or "See summary details" in line:
if i + 1 < len(lines):
extracted_data["advertiser"] = lines[i + 1].strip()
break
else:
# First line is likely the advertiser
if lines:
extracted_data["advertiser"] = lines[0].strip()
# Extract ad content
# Look for patterns to determine content boundaries
content_start_idx = -1
content_end_idx = len(lines)
# Find where "Sponsored" appears
for i, line in enumerate(lines):
if "Sponsored" in line:
content_start_idx = i + 1
break
# If no "Sponsored" found, look for advertiser + status
if content_start_idx == -1:
# Skip metadata lines
metadata_patterns = [
"Library ID:",
"Started running on",
"Platforms",
"Open Drop-down",
"See ad details",
"See summary details",
"This ad has multiple versions"
]
for i, line in enumerate(lines):
if any(pattern in line for pattern in metadata_patterns):
continue
if i > 0: # Skip first line (advertiser)
content_start_idx = i
break
# Find where UI elements start
ui_elements = [
"Like", "Comment", "Share", "Learn More", "Shop Now",
"Sign Up", "Visit Instagram profile", "See More"
]
for i, line in enumerate(lines):
# Skip lines before content start
if i <= content_start_idx:
continue
if any(ui in line for ui in ui_elements):
content_end_idx = i
break
# Extract content between boundaries
if content_start_idx != -1 and content_start_idx < content_end_idx:
content_lines = lines[content_start_idx:content_end_idx]
extracted_data["text"] = "\n".join(content_lines).strip()
# If text extraction failed, try element-based approaches
if "text" not in extracted_data or not extracted_data["text"]:
facebook_text_selectors = [
"div[data-ad-preview='message']", # Direct message container
"div[class*='_7jy6']", # Known ad text container
"div[data-testid='ad-creative-text']", # Test ID for ad text
"div[class*='_38ki']", # Another text container
"span[class*='_7oe']", # Text span
"div.text_exposed_root" # Exposed text root
]
for selector in facebook_text_selectors:
try:
elements = ad_element.find_elements(By.CSS_SELECTOR, selector)
text_content = " ".join([e.text.strip() for e in elements if e.text.strip()])
if text_content:
extracted_data["text"] = text_content
break
except:
pass
# If advertiser extraction failed, try element-based approaches
if "advertiser" not in extracted_data or not extracted_data["advertiser"]:
facebook_advertiser_selectors = [
"span[class*='fsl']", # Facebook specific large text class
"a[aria-label*='profile']", # Profile links often contain advertiser name
"h4", # Often contains advertiser name
"div[class*='_8jh5']", # Known advertiser class
"a[role='link']", # Links are often advertiser names
"div[class*='_3qn7']", # Another known advertiser container
"div[class*='_7jvw'] a", # Links within the ad card
]
for selector in facebook_advertiser_selectors:
try:
elements = ad_element.find_elements(By.CSS_SELECTOR, selector)
for element in elements:
text = element.text.strip()
if text and len(text) < 50: # Advertiser names are usually short
extracted_data["advertiser"] = text
break
if "advertiser" in extracted_data and extracted_data["advertiser"]:
break
except:
pass
return extracted_data
def _generate_placeholder_facebook_data(self, query):
"""Generate placeholder Facebook ad data when real ads cannot be scraped"""
logger.info(f"Returning placeholder Facebook ad data for query: {query}")
return [
{
"platform": "Facebook",
"query": query,
"advertiser": "Placeholder Advertiser 1",
"text": f"This is a placeholder ad for {query} since no actual ads could be scraped.",
"timestamp": datetime.now().isoformat(),
"index": 1,
"is_placeholder": True,
"session_id": self.session_id
},
{
"platform": "Facebook",
"query": query,
"advertiser": "Placeholder Advertiser 2",
"text": f"Another placeholder ad for {query}. Please check your scraping settings.",
"timestamp": datetime.now().isoformat(),
"index": 2,
"is_placeholder": True,
"session_id": self.session_id
}
]
def _save_debug_data(self, prefix, query):
"""Save debugging data for investigation"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
debug_dir = "debug_data"
if not os.path.exists(debug_dir):
os.makedirs(debug_dir)
# Save screenshot
screenshot_path = f"{debug_dir}/{prefix}_{query}_{timestamp}.png"
self.driver.save_screenshot(screenshot_path)
logger.info(f"Saved debug screenshot to {screenshot_path}")
# Save HTML
html_path = f"{debug_dir}/{prefix}_{query}_{timestamp}.html"
with open(html_path, "w", encoding="utf-8") as f:
f.write(self.driver.page_source)
logger.info(f"Saved debug HTML to {html_path}")
# Save sample of first ad structure if available
try:
ad_elements = self.driver.find_elements(By.CSS_SELECTOR, "div[class*='_7jvw']")
if ad_elements:
first_ad = ad_elements[0]
# Get sample HTML structure
first_ad_html = first_ad.get_attribute('outerHTML')
# Save first ad HTML
sample_path = f"{debug_dir}/{prefix}_sample_ad_{timestamp}.html"
with open(sample_path, "w", encoding="utf-8") as f:
f.write(first_ad_html)
logger.info(f"Saved sample ad HTML to {sample_path}")
# Log the text structure
logger.info(f"Sample ad text structure: {first_ad.text[:300]}...")
except Exception as e:
logger.error(f"Error saving ad sample: {e}")
def close(self):
"""Close the WebDriver and save stats"""
if self.driver:
self.driver.quit()
# Save selector stats one last time
self.selector_stats._save_stats()
# Facebook Gradio Interface Function
def fetch_facebook_ads(query):
"""Fetch Facebook ads only for Gradio interface"""
logger.info(f"Processing Facebook ad search for: {query}")
scraper = FacebookAdsScraper(headless=True, debug_mode=True)
# Perform headless check first
visibility_ok = scraper.check_headless_visibility()
if not visibility_ok:
logger.warning("Headless visibility check failed, results may be affected")
# Fetch ads from Facebook
facebook_ads = scraper.fetch_facebook_ads(query)
# Format for display
formatted_results = []
for ad in facebook_ads:
formatted_ad = f"Platform: {ad['platform']}\n"
# Include status if available
if 'status' in ad:
formatted_ad += f"Status: {ad['status']}\n"
formatted_ad += f"Advertiser: {ad['advertiser']}\n"
# Format ad text with word wrapping
text_lines = []
if ad['text'] and ad['text'] != "Ad content not available":
# Split long text into readable chunks
words = ad['text'].split()
current_line = ""
for word in words:
if len(current_line) + len(word) + 1 <= 80: # 80 chars per line
current_line += (" " + word if current_line else word)
else:
text_lines.append(current_line)
current_line = word
if current_line:
text_lines.append(current_line)
formatted_text = "\n".join(text_lines)
else:
formatted_text = ad['text']
formatted_ad += f"Ad Text: {formatted_text}\n"
formatted_ad += f"Timestamp: {ad['timestamp']}\n"
if ad.get('is_placeholder', False):
formatted_ad += "[THIS IS PLACEHOLDER DATA]\n"
formatted_ad += "-" * 50
formatted_results.append(formatted_ad)
scraper.close()
return "\n\n".join(formatted_results) if formatted_results else "No Facebook ads found for your query."
# Create a function to save ads to JSON
def save_ads_to_json(ads, query):
"""Save ads to a JSON file"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"facebook_ads_{query.replace(' ', '_')}_{timestamp}.json"
try:
with open(filename, 'w', encoding='utf-8') as f:
json.dump(ads, f, indent=2, ensure_ascii=False)
logger.info(f"Saved ads to {filename}")
return filename
except Exception as e:
logger.error(f"Error saving ads to JSON: {e}")
return None
#####################################
### GOOGLE ADS SCRAPER SECTION #####
#####################################
# Constants for Google Ads Scraper
MAX_ADS_DEFAULT = 5
# Import the actual GoogleAds class and regions
try:
from GoogleAds.main import GoogleAds, show_regions_list
from GoogleAds.regions import Regions
USING_ACTUAL_GOOGLE_ADS = True
logger.info("Successfully imported GoogleAds module")
except ImportError as e:
# Fallback to mock implementation if module is missing
logger.warning(f"GoogleAds module not found: {e}. Using mock implementation.")
USING_ACTUAL_GOOGLE_ADS = False
# Mock Regions dictionary - only used if real module fails to import
Regions = {
"GB": {"Region": "United Kingdom"}
}
def show_regions_list():
"""Mock function - only used if real module fails to import"""
return [("GB", "United Kingdom"), ("US", "United States")]
# Mock GoogleAds class - only used if real module fails to import
class GoogleAds:
def __init__(self, region="GB"):
self.region = region
logger.warning(f"Using MOCK GoogleAds implementation with region: {region}")
logger.warning("Please install the GoogleAds module for actual data")
def creative_search_by_advertiser_id(self, advertiser_id, count=5):
# Mock implementation - only used if real module fails to import
logger.warning(f"MOCK: Searching for creatives from advertiser {advertiser_id}")
return [f"creative_{i}_{advertiser_id}" for i in range(min(count, 3))]
def get_detailed_ad(self, advertiser_id, creative_id):
# Mock implementation - only used if real module fails to import
logger.warning(f"MOCK: Getting details for creative {creative_id}")
# Find advertiser name
advertiser_name = "Unknown"
for adv in ADVERTISERS:
if adv["id"] == advertiser_id:
advertiser_name = adv["name"]
break
# Return mock ad details
return {
"Ad Format": "Text",
"Advertiser": advertiser_name,
"Advertiser Name": advertiser_name,
"Ad Title": f"MOCK DATA - INSTALL GOOGLE ADS MODULE",
"Ad Body": f"This is MOCK data because the GoogleAds module is not installed. Please install the proper module.",
"Last Shown": datetime.now().strftime("%Y-%m-%d"),
"Creative Id": creative_id,
"Ad Link": "#"
}
def clean_ad_text(text):
"""Clean ad text by removing special characters and formatting issues."""
if text is None or not isinstance(text, str):
return ""
# Remove Unicode special characters often found in Google ads data
cleaned = text.replace('â¦', '') # Opening symbol
cleaned = cleaned.replace('â©', '') # Closing symbol
cleaned = cleaned.replace('<dynamically generated based on landing page content>', '[Dynamic Content]')
# Remove any other strange characters that might appear
cleaned = re.sub(r'[^\x00-\x7F]+', '', cleaned)
return cleaned.strip()
def get_regions_list():
"""Get a limited list of regions - only GB and anywhere."""
regions = [
("anywhere", "Global (anywhere)"),
("GB", f"{Regions['GB']['Region']} (GB)")
]
return regions
def search_by_advertiser_id(advertiser_id: str, max_ads=MAX_ADS_DEFAULT, region="GB", progress=gr.Progress(),
provided_name=None) -> Tuple[
str, Optional[pd.DataFrame], Optional[Dict]]:
try:
progress(0, desc="Initializing scraper...")
# Fix for region handling
region_val = region
if isinstance(region, tuple) and len(region) > 0:
region_val = region[0]
# Ensure 'anywhere' is handled correctly
if region_val == "Global (anywhere)" or "anywhere" in str(region_val).lower():
region_val = "anywhere"
# Initialize the Google Ads scraper
scraper = GoogleAds(region=region_val)
progress(0.2, desc=f"Fetching ads for advertiser ID: {advertiser_id}")
# Get creative IDs for this advertiser
creative_ids = scraper.creative_search_by_advertiser_id(advertiser_id, count=max_ads)
if not creative_ids:
return f"No ads found for advertiser ID: {advertiser_id}", None, None
progress(0.3, desc=f"Found {len(creative_ids)} ads. Fetching details...")
# Fetch detailed information for each ad
ads_data = []
ad_formats = {}
for i, creative_id in enumerate(creative_ids):
progress_val = 0.3 + (0.7 * (i / len(creative_ids)))
progress(progress_val, desc=f"Processing ad {i + 1}/{len(creative_ids)}")
try:
ad_details = scraper.get_detailed_ad(advertiser_id, creative_id)
# Fix encoding issues for Ad Title and Ad Body fields
if 'Ad Title' in ad_details:
ad_details['Ad Title'] = clean_ad_text(ad_details['Ad Title'])
if 'Ad Body' in ad_details:
ad_details['Ad Body'] = clean_ad_text(ad_details['Ad Body'])
ads_data.append(ad_details)
# Count ad formats
ad_format = ad_details.get("Ad Format", "Unknown")
ad_formats[ad_format] = ad_formats.get(ad_format, 0) + 1
# Brief pause to avoid overwhelming the server
time.sleep(0.2)
except Exception as e:
print(f"Error fetching details for ad {creative_id}: {e}")
if not ads_data:
return f"Retrieved creative IDs but couldn't fetch ad details for advertiser ID: {advertiser_id}", None, None
# Create a DataFrame for display
df = pd.DataFrame(ads_data)
# Generate summary info
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# Use provided name if available, otherwise try to determine from predefined list or ad data
advertiser_name = "Unknown"
# First, use the provided name if it exists
if provided_name:
advertiser_name = provided_name
else:
# Check our predefined list
for adv in ADVERTISERS:
if adv["id"] == advertiser_id:
advertiser_name = adv["name"]
break
# If still unknown, try to get from the ad data
if advertiser_name == "Unknown" and ads_data and len(ads_data) > 0:
# The field might be "Advertiser" or "Advertiser Name" depending on the version
for field in ["Advertiser", "Advertiser Name", "advertiser_name"]:
if field in ads_data[0]:
advertiser_name = ads_data[0][field]
break
summary = {
'advertiser_id': advertiser_id,
'advertiser_name': advertiser_name,
'ads_count': len(ads_data),
'timestamp': timestamp,
'region': region_val,
'ad_formats': ad_formats
}
# Find the earliest and latest ad
dates = []
for ad in ads_data:
# The field might be "Last Shown" or "last_shown_date" depending on the version
for field in ["Last Shown", "last_shown_date"]:
if field in ad and ad[field]:
dates.append(ad[field])
break
if dates:
summary['earliest_ad'] = min(dates)
summary['latest_ad'] = max(dates)
# Don't save the data, just prepare the summary info
summary = {
'advertiser_id': advertiser_id,
'advertiser_name': advertiser_name,
'ads_count': len(ads_data),
'timestamp': timestamp,
'region': region_val,
'ad_formats': ad_formats
}
# Find the earliest and latest ad
dates = []
for ad in ads_data:
# The field might be "Last Shown" or "last_shown_date" depending on the version
for field in ["Last Shown", "last_shown_date"]:
if field in ad and ad[field]:
dates.append(ad[field])
break
if dates:
summary['earliest_ad'] = min(dates)
summary['latest_ad'] = max(dates)
success_message = (
f"Found {len(ads_data)} ads for advertiser '{advertiser_name}' (ID: {advertiser_id})."
)
progress(1.0, desc="Complete!")
return success_message, df, summary
except Exception as e:
error_message = f"Error searching for advertiser ID: {str(e)}"
return error_message, None, None
def process_advertiser_search(advertiser_selection, region, max_ads, progress=gr.Progress()):
"""Handle the advertiser selection form submission and update the UI."""
# Extract advertiser ID and name from the selection format "ID: Name"
if not advertiser_selection:
return "Please select an advertiser to search", None, None, None
# Split the selection string to get the ID and name
parts = advertiser_selection.split(":", 1)
advertiser_id = parts[0].strip()
advertiser_name = parts[1].strip() if len(parts) > 1 else "Unknown"
# Perform the search
result_message, ads_df, summary_info = search_by_advertiser_id(
advertiser_id, max_ads, region, progress, advertiser_name
)
# Generate analysis if data is available
analysis_html = analyze_ads(ads_df, summary_info) if ads_df is not None and not ads_df.empty else None
return result_message, ads_df, analysis_html, summary_info
def analyze_ads(df: pd.DataFrame, summary: Dict) -> str:
"""
Analyze ads data and generate insights.
Args:
df: DataFrame containing ad data
summary: Dictionary with summary information
Returns:
HTML string with analysis results
"""
if df is None or df.empty or summary is None:
return "<h3>No data available for analysis</h3>"
try:
# Create a simple HTML report with the analysis
html = f"""
<div style="font-family: Arial, sans-serif;">
<h2>{summary.get('advertiser_name', 'Unknown Advertiser')} - Ad Analysis</h2>
<div style="background-color: #f5f5f5; padding: 15px; border-radius: 5px; margin-bottom: 20px;">
<h3>Overview</h3>
<p><b>Advertiser ID:</b> {summary.get('advertiser_id', 'Unknown')}</p>
<p><b>Total Ads Found:</b> {summary['ads_count']}</p>
<p><b>Region:</b> {summary['region']}</p>
<p><b>Data Collected:</b> {summary['timestamp'].replace('_', ' ').replace('-', '/')}</p>
{f"<p><b>Ad Date Range:</b> {summary.get('earliest_ad')} to {summary.get('latest_ad')}</p>" if 'earliest_ad' in summary else ""}
</div>
<div style="display: flex; margin-bottom: 20px;">
<div style="flex: 1; background-color: #f5f5f5; padding: 15px; border-radius: 5px; margin-right: 10px;">
<h3>Ad Format Distribution</h3>
<table style="width: 100%; border-collapse: collapse;">
<tr style="background-color: #eaeaea;">
<th style="text-align: left; padding: 8px; border-bottom: 1px solid #ddd;">Format</th>
<th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">Count</th>
<th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">Percentage</th>
</tr>
"""
total = sum(summary['ad_formats'].values())
for format_name, count in summary['ad_formats'].items():
percentage = (count / total) * 100
html += f"""
<tr>
<td style="padding: 8px; border-bottom: 1px solid #ddd;">{format_name}</td>
<td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">{count}</td>
<td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">{percentage:.1f}%</td>
</tr>
"""
html += """
</table>
</div>
"""
# Common words in ad titles
if 'Ad Title' in df.columns and not df['Ad Title'].isna().all():
from collections import Counter
import re
# Extract words from titles
all_titles = ' '.join(df['Ad Title'].dropna().astype(str).tolist())
words = re.findall(r'\b\w+\b', all_titles.lower())
# Remove common stop words
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'with', 'by', 'of', 'is',
'are'}
filtered_words = [word for word in words if word not in stop_words and len(word) > 2]
# Count word frequencies
word_counts = Counter(filtered_words).most_common(10)
if word_counts:
html += """
<div style="flex: 1; background-color: #f5f5f5; padding: 15px; border-radius: 5px;">
<h3>Most Common Words in Ad Titles</h3>
<table style="width: 100%; border-collapse: collapse;">
<tr style="background-color: #eaeaea;">
<th style="text-align: left; padding: 8px; border-bottom: 1px solid #ddd;">Word</th>
<th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">Frequency</th>
</tr>
"""
for word, count in word_counts:
html += f"""
<tr>
<td style="padding: 8px; border-bottom: 1px solid #ddd;">{word}</td>
<td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">{count}</td>
</tr>
"""
html += """
</table>
</div>
"""
html += """
</div>
<h3>SEO & Marketing Insights</h3>
<div style="background-color: #f5f5f5; padding: 15px; border-radius: 5px; margin-bottom: 20px;">
"""
# Add general insights
html += f"""
<h4>Competitive Intelligence</h4>
<ul>
<li>The advertiser has been active in advertising until {summary.get('latest_ad', 'recently')}</li>
<li>Their ad strategy focuses primarily on {max(summary['ad_formats'].items(), key=lambda x: x[1])[0]} ads</li>
<li>Consider monitoring changes in their ad frequency and creative strategy over time</li>
</ul>
<h4>UK Market Insights</h4>
<ul>
<li>The ads were collected for the {summary['region']} market</li>
<li>Regular monitoring can reveal seasonal UK advertising patterns</li>
<li>Compare with other regions to identify UK-specific marketing approaches</li>
</ul>
"""
html += """
</div>
<h3>All Ad Examples</h3>
"""
# Add example ads (all of them, not just the most recent)
if not df.empty:
# Sort by Last Shown date if available
if 'Last Shown' in df.columns:
df = df.sort_values(by='Last Shown', ascending=False)
# Get all ads, not just the top 3
for i, (_, ad) in enumerate(df.iterrows()):
html += f"""
<div style="background-color: #f5f5f5; padding: 15px; border-radius: 5px; margin-bottom: 15px;">
<h4>Ad {i + 1}: {ad.get('Creative Id', '')}</h4>
<p><b>Format:</b> {ad.get('Ad Format', 'Unknown')}</p>
<p><b>Last Shown:</b> {ad.get('Last Shown', 'Unknown')}</p>
"""
# Display title and body if available
if 'Ad Title' in ad and pd.notna(ad['Ad Title']) and ad['Ad Title']:
html += f"<p><b>Title:</b> {ad['Ad Title']}</p>"
if 'Ad Body' in ad and pd.notna(ad['Ad Body']) and ad['Ad Body']:
body = ad['Ad Body']
if len(body) > 150:
body = body[:150] + "..."
html += f"<p><b>Body:</b> {body}</p>"
# Display image or video links if available
if 'Image URL' in ad and pd.notna(ad['Image URL']) and ad['Image URL']:
html += f"""<p><img src="{ad['Image URL']}" style="max-width: 300px; max-height: 200px;" /></p>"""
if 'Ad Link' in ad and pd.notna(ad['Ad Link']) and ad['Ad Link'] and ad.get('Ad Format') != 'Text':
html += f"""<p><b>Ad Link:</b> <a href="{ad['Ad Link']}" target="_blank">View Ad</a></p>"""
html += "</div>"
html += """
</div>
"""
return html
except Exception as e:
return f"<h3>Error analyzing data: {str(e)}</h3>"
#####################################
### COMBINED INTERFACE SECTION #####
#####################################
def create_combined_app():
"""Create the combined Gradio interface with Facebook and Google Ads scrapers"""
# Create dropdown choices for advertiser selection
advertiser_choices = [f"{adv['id']}: {adv['name']}" for adv in ADVERTISERS]
with gr.Blocks(title="Combined Ads Transparency Scraper") as app:
gr.Markdown("# Combined Ads Transparency Scraper")
gr.Markdown("## Search for ads from Facebook and Google Ads transparency tools")
# Create tabs for the two different scrapers
with gr.Tabs() as tabs:
# Tab 1: Facebook Ad Library Scraper
with gr.TabItem("Facebook Ad Library"):
gr.Markdown("### Facebook Ad Library Search")
gr.Markdown("Search for ads by brand, domain, or keyword")
with gr.Row():
fb_query_input = gr.Textbox(
label="Search Query",
placeholder="Enter brand, domain or product name",
value=""
)
fb_search_button = gr.Button("Find Facebook Ads", variant="primary")
fb_results_output = gr.Textbox(label="Search Results", lines=20)
fb_save_button = gr.Button("Save Results to JSON")
fb_save_status = gr.Textbox(label="Save Status", lines=1)
# Define the save function for Facebook
def save_fb_results(query, results_text):
if not results_text or "No Facebook ads found" in results_text:
return "No ads to save"
# Get the scraper to fetch fresh ads for JSON format
scraper = FacebookAdsScraper(headless=True, debug_mode=False)
ads = scraper.fetch_facebook_ads(query)
scraper.close()
# Save to JSON
filename = save_ads_to_json(ads, query)
if filename:
return f"Saved {len(ads)} ads to {filename}"
else:
return "Error saving ads to JSON"
# Connect Facebook interface components
fb_search_button.click(
fn=fetch_facebook_ads,
inputs=[fb_query_input],
outputs=[fb_results_output]
)
fb_save_button.click(
fn=save_fb_results,
inputs=[fb_query_input, fb_results_output],
outputs=[fb_save_status]
)
# Tab 2: Lightsaber Companies Google Ads Scraper
with gr.TabItem("Google Ads (Lightsaber Companies)"):
gr.Markdown("### Lightsaber Companies Ads Transparency Scraper")
gr.Markdown("View Google Ads data for popular lightsaber companies")
with gr.Row():
with gr.Column(scale=3):
advertiser_dropdown = gr.Dropdown(
choices=advertiser_choices,
label="Select Lightsaber Company",
info="Choose a company to view their Google Ads data"
)
with gr.Row():
region_dropdown = gr.Dropdown(
choices=get_regions_list(),
value="GB", # UK is the default
label="Region",
info="Choose between Global or UK"
)
max_ads_slider = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Max Ads to Retrieve"
)
search_button = gr.Button("Search Ads", variant="primary")
with gr.Column(scale=2):
result_message = gr.Markdown(label="Search Result")
# Tabs for displaying Google Ads search results
with gr.Tabs() as google_result_tabs:
with gr.Tab("Analysis"):
analysis_html = gr.HTML()
with gr.Tab("Raw Data"):
ads_table = gr.DataFrame()
# State for storing summary info
summary_info = gr.State()
# Connect the Google Ads inputs to the output function
search_button.click(
fn=process_advertiser_search,
inputs=[advertiser_dropdown, region_dropdown, max_ads_slider],
outputs=[result_message, ads_table, analysis_html, summary_info]
)
# About section for the combined app
with gr.Accordion("About This Tool", open=False):
gr.Markdown("""
## About Combined Ads Transparency Scraper
This tool combines two different ad transparency scrapers:
1. **Facebook Ad Library Scraper**: Search for any advertiser's ads on Facebook.
2. **Google Ads Transparency Scraper**: View ads for popular lightsaber companies.
### Technical Details
- The Facebook scraper uses Selenium WebDriver with anti-detection techniques.
- The Google Ads scraper leverages the Google Ad Transparency API.
- Both scrapers include adaptive error handling and fallback mechanisms.
### Usage Notes
- Facebook scraping may take 30-60 seconds to complete
- Search results are not stored permanently
- Use the "Save Results" button to save data for later analysis
**Note**: This tool is intended for research and educational purposes only.
""")
return app
# Main execution
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Combined Ads Transparency Scraper")
parser.add_argument("--headless", action="store_true", default=True, help="Run in headless mode")
parser.add_argument("--debug", action="store_true", help="Enable debug mode with extra logging")
parser.add_argument("--fb-query", type=str, help="Facebook search query to run directly without Gradio")
parser.add_argument("--google-advertiser", type=str, help="Google Ads advertiser ID to run directly without Gradio")
parser.add_argument("--save", action="store_true", help="Save results to JSON file when using direct query")
args = parser.parse_args()
if args.fb_query:
# Run direct query mode for Facebook
scraper = FacebookAdsScraper(headless=args.headless, debug_mode=args.debug)
scraper.check_headless_visibility()
facebook_ads = scraper.fetch_facebook_ads(args.fb_query)
# Display results
print(f"\nFound {len(facebook_ads)} Facebook ads for '{args.fb_query}'")
if facebook_ads:
for i, ad in enumerate(facebook_ads):
print(f"\n--- Ad {i + 1} ---")
print(f"Platform: {ad['platform']}")
if 'status' in ad:
print(f"Status: {ad['status']}")
print(f"Advertiser: {ad['advertiser']}")
print(f"Text: {ad['text']}")
if ad.get('is_placeholder', False):
print("[THIS IS PLACEHOLDER DATA]")
# Save to JSON if requested
if args.save:
filename = save_ads_to_json(facebook_ads, args.fb_query)
if filename:
print(f"\nSaved {len(facebook_ads)} ads to {filename}")
else:
print("No Facebook ads found.")
scraper.close()
elif args.google_advertiser:
# Run direct query mode for Google Ads
advertiser_id = args.google_advertiser
# Find advertiser name if it's in our list
advertiser_name = "Unknown"
for adv in ADVERTISERS:
if adv["id"] == advertiser_id:
advertiser_name = adv["name"]
break
print(f"\nSearching for Google Ads from advertiser '{advertiser_name}' (ID: {advertiser_id})")
# Use a dummy progress object for CLI
class DummyProgress:
def __call__(self, value, desc=None):
if desc:
print(f"{desc} ({value * 100:.0f}%)")
result_message, ads_df, summary_info = search_by_advertiser_id(
advertiser_id,
max_ads=5,
region="GB",
progress=DummyProgress(),
provided_name=advertiser_name
)
print(f"\n{result_message}")
if ads_df is not None and not ads_df.empty:
print("\nFound ads:")
for i, (_, ad) in enumerate(ads_df.iterrows()):
print(f"\n--- Ad {i + 1} ---")
print(f"Format: {ad.get('Ad Format', 'Unknown')}")
print(f"Title: {ad.get('Ad Title', 'Unknown')}")
body_text = ad.get('Ad Body', 'Unknown')
if len(body_text) > 100:
body_text = body_text[:100] + "..."
print(f"Body: {body_text}")
print(f"Last Shown: {ad.get('Last Shown', 'Unknown')}")
print(f"Creative ID: {ad.get('Creative Id', 'Unknown')}")
else:
print("No Google ads found or error occurred.")
else:
# Run Gradio interface
app = create_combined_app()
print("Starting Combined Ads Transparency Scraper")
print("Facebook: Search for any brand or company")
print("Google Ads: Available lightsaber companies:")
for adv in ADVERTISERS:
print(f" - {adv['name']}")
app.launch()
|