# AUTOGENERATED! DO NOT EDIT! File to edit: ../drive/MyDrive/Codici/Python/Apps/Gradio_App/Image Classification/simlpe_image_models.ipynb. # %% auto 0 __all__ = ['cat_dog_model', 'bear_model', 'input_model', 'input_image', 'output_label', 'bear_examples', 'cat_examples', 'examples', 'intf', 'get_model', 'classify_image'] # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/Image Classification/simlpe_image_models.ipynb 2 # !pip install -Uqq fastai # !pip install -Uqq fastbook # !pip install gradio # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/Image Classification/simlpe_image_models.ipynb 3 # import fastbook # fastbook.setup_book() # from fastbook import * # from fastai.vision.widgets import * from fastai.vision.all import * import gradio as gr # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/Image Classification/simlpe_image_models.ipynb 4 cat_dog_model = load_learner('cat_dog.pkl') bear_model = load_learner("bear_classifier.pkl") # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/Image Classification/simlpe_image_models.ipynb 7 # Define a function to load the appropriate model def get_model(model_name): if model_name == 'Cat vs Dog Model': return cat_dog_model elif model_name == 'Bear Model': return bear_model else: raise ValueError("Model not found") # Classification Function def classify_image(model_name, img): model = get_model(model_name) categories = model.dls.vocab pred, idx, probs = model.predict(img) return dict(zip(categories, map(float, probs))) # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/Image Classification/simlpe_image_models.ipynb 10 #INPUTS input_model = gr.Dropdown(['Cat vs Dog Model', 'Bear Model']) input_image = gr.components.Image(width=192, height=192) #OUTPUT output_label = gr.components.Label() #EXAMPLES bear_examples = ['black.jpg', 'grizzly.jpg', 'teddy.jpg'] cat_examples = ['cat.jpg', 'dog.jpg'] examples = [ ['Bear Model',bear_examples[0]], # added model name ['Bear Model',bear_examples[1]], # added model name ['Bear Model',bear_examples[2]], # added model name ['Cat vs Dog Model', cat_examples[0]], # added model name ['Cat vs Dog Model', cat_examples[1]], # added model name ] #INTERFACE intf = gr.Interface(fn=classify_image, inputs=[ input_model, input_image], outputs=output_label, examples=examples, theme=gr.themes.Ocean()) #LAUNCH APP intf.launch(inline=False, # share=True )