Fouzanjaved commited on
Commit
ebbdd25
·
verified ·
1 Parent(s): 3eb74f6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+ from mpl_toolkits.mplot3d import Axes3D
4
+ import gradio as gr
5
+ from scipy.optimize import minimize
6
+
7
+ # Define forward kinematics (simplified example)
8
+ def forward_kinematics(theta):
9
+ # Replace with actual FK for your robot
10
+ # Example: Simple 3D position calculation
11
+ x = np.cos(theta[0]) + np.cos(theta[1]) + np.cos(theta[2])
12
+ y = np.sin(theta[0]) + np.sin(theta[1]) + np.sin(theta[2])
13
+ z = theta[3] + theta[4] + theta[5]
14
+ return np.array([x, y, z])
15
+
16
+ # Define inverse kinematics using scipy.optimize
17
+ def inverse_kinematics(target_position, initial_angles):
18
+ def error_function(theta):
19
+ current_position = forward_kinematics(theta)
20
+ return np.linalg.norm(target_position - current_position)
21
+
22
+ # Use scipy.optimize to minimize the error
23
+ result = minimize(error_function, initial_angles, method='BFGS')
24
+ return result.x
25
+
26
+ # Generate trajectory (from initial to target position)
27
+ def generate_trajectory(target_position):
28
+ initial_angles = [0, 0, 0, 0, 0, 0] # Initial joint angles
29
+ target_angles = inverse_kinematics(target_position, initial_angles)
30
+ # Interpolate between initial and target angles
31
+ trajectory = np.linspace(initial_angles, target_angles, 100)
32
+ return trajectory
33
+
34
+ # Plot the trajectory in 3D
35
+ def plot_trajectory(trajectory):
36
+ x, y, z = [], [], []
37
+ for theta in trajectory:
38
+ position = forward_kinematics(theta)
39
+ x.append(position[0])
40
+ y.append(position[1])
41
+ z.append(position[2])
42
+
43
+ fig = plt.figure()
44
+ ax = fig.add_subplot(111, projection='3d')
45
+ ax.plot(x, y, z, label="Robot Trajectory")
46
+ ax.scatter(x[0], y[0], z[0], color='green', label="Start")
47
+ ax.scatter(x[-1], y[-1], z[-1], color='red', label="Target")
48
+ ax.set_xlabel("X")
49
+ ax.set_ylabel("Y")
50
+ ax.set_zlabel("Z")
51
+ ax.legend()
52
+ return fig
53
+
54
+ # Gradio Interface
55
+ def gradio_interface(x, y, z):
56
+ target_position = np.array([x, y, z])
57
+
58
+ # Generate trajectory
59
+ trajectory = generate_trajectory(target_position)
60
+
61
+ # Plot trajectory
62
+ fig = plot_trajectory(trajectory)
63
+ return fig
64
+
65
+ # Launch Gradio App
66
+ iface = gr.Interface(
67
+ fn=gradio_interface,
68
+ inputs=[
69
+ gr.Number(label="Target X"),
70
+ gr.Number(label="Target Y"),
71
+ gr.Number(label="Target Z")
72
+ ],
73
+ outputs="plot",
74
+ live=False, # Disable live updates to show Submit button
75
+ title="6-DOF Robot Path Planning with Inverse Kinematics",
76
+ description="Enter the target (x, y, z) position and click Submit to generate the optimized trajectory."
77
+ )
78
+
79
+ iface.launch()