import torch from typing import List, Tuple from torch.nn import functional as F from torch import distributed as tdist, nn as nn from unitok import dist def get_entropy_loss(latent_embed, codebook_embed, inv_entropy_tau): E_dist = latent_embed.square().sum(dim=1, keepdim=True) + codebook_embed.square().sum(dim=1, keepdim=False) E_dist.addmm_(latent_embed, codebook_embed.T, alpha=-2, beta=1) # E_dist: (N, vocab_size) logits = -E_dist.float().mul_(inv_entropy_tau) # calc per_sample_entropy prob, log_prob = logits.softmax(dim=-1), logits.log_softmax(dim=-1) # both are (N, vocab_size) per_sample_entropy = torch.mean((-prob * log_prob).sum(dim=-1)) # calc codebook_entropy avg_prob = prob.mean(dim=0) # (vocab_size,) log_avg_prob = torch.log(avg_prob + 1e-7) codebook_entropy = (-avg_prob * log_avg_prob).sum() # calc entropy_loss entropy_loss = per_sample_entropy - codebook_entropy return entropy_loss class NormalizedEmbedding(nn.Embedding): def __init__(self, num_embeddings: int, embedding_dim: int): super().__init__(num_embeddings=num_embeddings, embedding_dim=embedding_dim) # self.norm_scale = nn.Parameter(torch.tensor(0.0, dtype=torch.float32)) def forward(self, idx): return F.embedding( idx, F.normalize(self.weight, dim=1), self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse ) def get_norm_weight(self): return F.normalize(self.weight, dim=1) class ResConv(nn.Conv2d): def __init__(self, embed_dim, quant_resi): ks = 3 if quant_resi < 0 else 1 super().__init__(in_channels=embed_dim, out_channels=embed_dim, kernel_size=ks, stride=1, padding=ks // 2) self.resi_ratio = abs(quant_resi) def forward(self, h_BChw): return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_(self.resi_ratio) class VectorQuantizer(nn.Module): def __init__( self, vocab_size: int, vocab_width: int, beta: float = 0.25, use_entropy_loss=False, entropy_temp=0.01, ): super().__init__() self.beta = beta self.vocab_size = vocab_size self.vocab_width = vocab_width self.vocab_usage_record_times: int = 0 self.register_buffer('vocab_usage', torch.zeros(self.vocab_size)) self.codebook = NormalizedEmbedding(self.vocab_size, self.vocab_width) self.use_entropy_loss = use_entropy_loss self.inv_entropy_tau = 1 / entropy_temp def init_vocab(self, eini: float): if eini > 0: nn.init.trunc_normal_(self.codebook.weight.data, std=eini) elif eini < 0: base = self.vocab_width ** -0.5 base /= 36 self.codebook.weight.data.uniform_(-abs(eini) * base, abs(eini) * base) def extra_repr(self) -> str: return f'beta={self.beta:g}' def forward(self, features): B, L, C = features.shape features = features.reshape(-1, C) features = F.normalize(features, dim=-1).float() codebook_embed = self.codebook.get_norm_weight() indices = torch.argmax(features.detach() @ codebook_embed.T, dim=1) entropy_loss = get_entropy_loss(features, codebook_embed, self.inv_entropy_tau) if self.use_entropy_loss else 0 features_hat = self.codebook(indices) # calc loss vq_loss = F.mse_loss(features_hat.detach(), features).mul_(self.beta) + F.mse_loss(features_hat, features.detach()) features_hat = (features_hat.detach() - features.detach()).add_(features) # update vocab_usage prob_per_class_is_chosen = indices.bincount(minlength=self.vocab_size).float() handler = tdist.all_reduce(prob_per_class_is_chosen, async_op=True) if ( self.training and dist.initialized()) else None if handler is not None: handler.wait() prob_per_class_is_chosen /= prob_per_class_is_chosen.sum() vocab_usage = (prob_per_class_is_chosen > 0.01 / self.vocab_size).float().mean().mul_(100) if self.vocab_usage_record_times == 0: self.vocab_usage.copy_(prob_per_class_is_chosen) elif self.vocab_usage_record_times < 100: self.vocab_usage.mul_(0.9).add_(prob_per_class_is_chosen, alpha=0.1) else: self.vocab_usage.mul_(0.99).add_(prob_per_class_is_chosen, alpha=0.01) self.vocab_usage_record_times += 1 return features_hat.view(B, L, C), vq_loss, entropy_loss, vocab_usage def f_to_idx(self, features): B, L, C = features.shape features = features.reshape(-1, C) features = F.normalize(features, dim=-1).float() codebook_embed = self.codebook.get_norm_weight().float() indices = torch.argmax(features.detach() @ codebook_embed.T, dim=1) return indices.view(B, L) class VectorQuantizerM(nn.Module): def __init__( self, vocab_size, vocab_width, beta=0.25, use_entropy_loss=False, entropy_temp=0.01, num_codebooks=16 ): super().__init__() self.num_codebooks = num_codebooks self.codebooks = nn.ModuleList() for _ in range(num_codebooks): codebook = VectorQuantizer( vocab_size=vocab_size // num_codebooks, vocab_width=vocab_width // num_codebooks, beta=beta, use_entropy_loss=use_entropy_loss, entropy_temp=entropy_temp, ) self.codebooks.append(codebook) def init_vocab(self, eini: float): for codebook in self.codebooks: codebook.init_vocab(eini) def f_to_idx(self, features): indices = [] chunk_size = features.shape[-1] // self.num_codebooks splited_features = features.split(chunk_size, dim=-1) for i, codebook in enumerate(self.codebooks): indices.append(codebook.f_to_idx(splited_features[i])) indices = torch.stack(indices, dim=1) return indices def idx_to_f(self, indices): assert indices.shape[1] == self.num_codebooks latent_features = [] for i, codebook in enumerate(self.codebooks): sub_indices = indices[:, i].flatten(start_dim=1) latent_feature = codebook.codebook(sub_indices) latent_features.append(latent_feature) latent_features = torch.cat(latent_features, dim=-1) return latent_features def forward(self, features): latent_features = [] global_vq_loss = 0. global_entropy_loss = 0. global_vocab_usage = 0. chunk_size = features.shape[-1] // self.num_codebooks splited_features = features.split(chunk_size, dim=-1) for i, codebook in enumerate(self.codebooks): latent_feature, vq_loss, entropy_loss, vocab_usage = codebook(splited_features[i]) latent_features.append(latent_feature) global_vq_loss += vq_loss global_entropy_loss += entropy_loss global_vocab_usage += vocab_usage latent_features = torch.cat(latent_features, dim=-1) global_entropy_loss /= self.num_codebooks global_vq_loss /= self.num_codebooks global_vocab_usage /= self.num_codebooks return latent_features, global_vq_loss, global_entropy_loss, global_vocab_usage