Spaces:
Running
on
Zero
Running
on
Zero
import timm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from contextlib import nullcontext | |
from torch.nn.functional import scaled_dot_product_attention | |
from unitok.quant import VectorQuantizerM | |
from unitok.vitamin import ViTaminDecoder, GeGluMlp | |
class PlainAttention(nn.Module): | |
def __init__(self, in_dim, out_dim, num_heads): | |
super().__init__() | |
if in_dim > out_dim: | |
# assert in_dim // num_heads == out_dim | |
self.head_dim = in_dim // num_heads | |
self.qkv = nn.Linear(in_dim, in_dim * 3, bias=False) | |
self.q_bias = nn.Parameter(torch.zeros(in_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(in_dim)) | |
self.register_buffer('zero_k_bias', torch.zeros(in_dim)) | |
else: | |
# assert out_dim // num_heads == in_dim | |
self.head_dim = out_dim // num_heads | |
self.qkv = nn.Linear(in_dim, out_dim * 3, bias=False) | |
self.q_bias = nn.Parameter(torch.zeros(out_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(out_dim)) | |
self.register_buffer('zero_k_bias', torch.zeros(out_dim)) | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
self.scale = self.head_dim ** -0.5 | |
self.proj = nn.Linear(out_dim, out_dim) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, N, C = x.shape | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=torch.cat((self.q_bias, self.zero_k_bias, self.v_bias))) | |
q, k, v = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4).unbind(0) | |
x = scaled_dot_product_attention(q, k, v) | |
if self.in_dim > self.out_dim: | |
x = torch.mean(x, dim=1) | |
if self.in_dim // self.num_heads != self.out_dim: | |
x = nn.functional.adaptive_avg_pool1d(x, self.out_dim) | |
else: | |
x = x.transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
return x | |
class AttnProjection(nn.Module): | |
def __init__(self, in_dim, out_dim, num_heads, norm_layer=nn.LayerNorm, mlp_ratio=2): | |
super().__init__() | |
assert out_dim % in_dim == 0 or in_dim % out_dim == 0 | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.norm1 = norm_layer(in_dim) | |
self.attn = PlainAttention(in_dim, out_dim, num_heads) | |
self.proj = nn.Linear(in_dim, out_dim) | |
self.norm3 = norm_layer(in_dim) | |
self.norm2 = norm_layer(out_dim) | |
hidden_dim = int(out_dim * mlp_ratio) | |
self.mlp = GeGluMlp( | |
in_features=out_dim, | |
hidden_features=hidden_dim | |
) | |
def forward(self, x): | |
x = self.proj(self.norm3(x)) + self.attn(self.norm1(x)) | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class VQVAE(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
# 1. build encoder | |
self.encoder = timm.create_model( | |
args.model, | |
patch_size=1, | |
fc_norm=True, | |
drop_rate=0.0, | |
num_classes=0, | |
global_pool='', | |
pos_embed='none', | |
class_token=False, | |
mlp_layer=GeGluMlp, | |
img_size=args.img_size, | |
drop_path_rate=args.drop_path, | |
) | |
self.encoder.set_grad_checkpointing(args.grad_ckpt) | |
# 2. build conv before quant | |
if args.quant_proj == 'linear': | |
self.quant_proj = nn.Linear(self.encoder.embed_dim, args.vocab_width) | |
elif args.quant_proj == 'attn': | |
self.quant_proj = AttnProjection(self.encoder.embed_dim, args.vocab_width, args.num_codebooks) | |
else: | |
raise NotImplementedError | |
# 3. build quant | |
self.quantize = VectorQuantizerM( | |
vocab_size=args.vocab_size, | |
vocab_width=args.vocab_width, | |
beta=args.vq_beta, | |
use_entropy_loss=args.le > 0, | |
entropy_temp=args.e_temp, | |
num_codebooks=args.num_codebooks, | |
) | |
# 4. build conv after quant | |
if args.quant_proj == 'linear': | |
self.post_quant_proj = nn.Linear(args.vocab_width, self.encoder.embed_dim) | |
elif args.quant_proj == 'attn': | |
self.post_quant_proj = AttnProjection(args.vocab_width, self.encoder.embed_dim, args.num_codebooks) | |
else: | |
raise NotImplementedError | |
# 5. build decoder | |
self.decoder = ViTaminDecoder( | |
args.model, | |
depths=(4, 2), | |
img_size=args.img_size, | |
drop_path=args.drop_path, | |
grad_ckpt=args.grad_ckpt | |
) | |
self.maybe_record_function = nullcontext | |
def forward(self, img): | |
features = self.encoder(img).float() | |
with torch.cuda.amp.autocast(enabled=False): | |
features = self.quant_proj(features) | |
quant_out = self.quantize(features) | |
features, vq_loss, entropy_loss, usages = quant_out | |
features = self.post_quant_proj(features) | |
rec_img = self.decoder(features).float() | |
return rec_img, vq_loss, entropy_loss, usages | |
def img_to_idx(self, img): | |
features = self.encoder(img).float() | |
features = self.quant_proj(features) | |
return self.quantize.f_to_idx(features) | |
def idx_to_img(self, indices): | |
features = self.quantize.idx_to_f(indices) | |
features = self.post_quant_proj(features) | |
img = self.decoder(features).clamp_(-1, 1) | |
return img | |
def img_to_reconstructed_img(self, img) -> torch.Tensor: | |
features = self.encoder(img).float() | |
with torch.cuda.amp.autocast(enabled=False): | |
features = self.quant_proj(features) | |
quant_out = self.quantize(features) | |
features, _, _, _ = quant_out | |
features = self.post_quant_proj(features) | |
rec_img = self.decoder(features).float().clamp_(-1, 1) | |
return rec_img | |
if __name__ == '__main__': | |
for clz in (nn.Linear, nn.LayerNorm, nn.BatchNorm2d, nn.SyncBatchNorm, nn.Conv1d, nn.Conv2d, nn.ConvTranspose1d, | |
nn.ConvTranspose2d): | |
setattr(clz, 'reset_parameters', lambda self: None) | |
cnn = VQVAE(channel_num=64, vocab_norm=False) | |
from models import init_weights | |
init_weights(cnn, -0.5) | |
torch.save(cnn.state_dict(), r'C:\Users\16333\Desktop\PyCharm\vlip\local_output\cnn.pth') | |