UniTok / unitok /vitamin.py
machuofan
init
7385f22
"""
TODO: FIXME:
/usr/local/lib/python3.9/dist-packages/torch/autograd/__init__.py:251: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance.
grad.sizes() = [256, 1024, 1, 1], strides() = [1024, 1, 1024, 1024]
bucket_view.sizes() = [256, 1024, 1, 1], strides() = [1024, 1, 1, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:334.) Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
/usr/local/lib/python3.9/dist-packages/torch/autograd/__init__.py:251: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance.
grad.sizes() = [256, 1024, 1, 1], strides() = [1024, 1, 1024, 1024]
"""
""" ViTamin
Paper: Designing Scalable Vison Models in the Vision-Language Era
@misc{chen2023designing,
title={Designing Scalable Vison Models in the Vision-Language Era},
author={Jieneng Chen and Qihang Yu and Xiaohui Shen and Alan Yuille and Liang-Cheih Chen},
year={2023},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Based on Apache 2.0 licensed code at https://github.com/ViTamin/ViTamin
Modifications and timm support by Jieneng Chen 2023
Reference:
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer_hybrid.py
"""
import math
from dataclasses import dataclass
from functools import partial
import torch.nn.functional as F
from typing import Optional, Tuple, Union
import timm
import torch
import torch.nn as nn
from timm.layers import to_2tuple
from timm.layers.norm_act import _create_act
from timm.models._builder import build_model_with_cfg
from timm.models._manipulate import checkpoint_seq, named_apply
from timm.models._registry import register_model
from timm.models.layers import DropPath
from timm.models.layers import create_conv2d, get_norm_act_layer, get_norm_layer, make_divisible
from timm.models.vision_transformer import VisionTransformer, checkpoint_filter_fn
from timm.models.vision_transformer_hybrid import HybridEmbed
from torch.utils.checkpoint import checkpoint
DropPath.__repr__ = lambda self: f'{type(self).__name__}(...)'
@dataclass
class VitConvCfg:
expand_ratio: float = 4.0
expand_output: bool = True # calculate expansion channels from output (vs input chs)
kernel_size: int = 3
group_size: int = 1 # 1 == depthwise
pre_norm_act: bool = False # activation after pre-norm
stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw'
pool_type: str = 'avg2'
downsample_pool_type: str = 'avg2'
act_layer: str = 'gelu' # stem & stage 1234
act_layer1: str = 'gelu' # stage 1234
act_layer2: str = 'gelu' # stage 1234
norm_layer: str = ''
norm_layer_cl: str = ''
norm_eps: Optional[float] = None
down_shortcut: Optional[bool] = True
mlp: str = 'mlp'
def __post_init__(self):
# mbconv vs convnext blocks have different defaults, set in post_init to avoid explicit config args
use_mbconv = True
if not self.norm_layer:
self.norm_layer = 'batchnorm2d' if use_mbconv else 'layernorm2d'
if not self.norm_layer_cl and not use_mbconv:
self.norm_layer_cl = 'layernorm'
if self.norm_eps is None:
self.norm_eps = 1e-5 if use_mbconv else 1e-6
self.downsample_pool_type = self.downsample_pool_type or self.pool_type
@dataclass
class VitCfg:
# embed_dim: Tuple[int, ...] = (96, 192, 384, 768)
embed_dim: Tuple[Union[int, Tuple[int, ...]], ...] = (96, 192, 384, 768)
depths: Tuple[Union[int, Tuple[int, ...]], ...] = (2, 3, 5, 2)
stem_width: int = 64
conv_cfg: VitConvCfg = None
weight_init: str = 'vit_eff'
head_type: str = ""
stem_type: str = "stem"
ln2d_permute: bool = True
# memory_format: str=""
def _init_conv(module, name, scheme=''):
if isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out))
if module.bias is not None:
nn.init.zeros_(module.bias)
class Stem(nn.Module):
def __init__(
self,
in_chs: int,
out_chs: int,
act_layer: str = 'gelu',
norm_layer: str = 'layernorm2d',
norm_eps: float = 1e-6,
bias: bool = True,
):
super().__init__()
self.grad_checkpointing=False
norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
self.out_chs = out_chs
self.conv1 = create_conv2d(in_chs, out_chs, 3, stride=2, bias=bias)
self.norm1 = norm_act_layer(out_chs)
self.conv2 = create_conv2d(out_chs, out_chs, 3, stride=1, bias=bias)
named_apply(_init_conv, self)
def forward(self, x):
if self.grad_checkpointing:
x = checkpoint(self.conv1, x)
x = self.norm1(x)
x = checkpoint(self.conv2, x)
else:
x = self.conv1(x)
x = self.norm1(x)
x = self.conv2(x)
return x
class Downsample2d(nn.Module):
def __init__(
self,
dim: int,
dim_out: int,
pool_type: str = 'avg2',
bias: bool = True,
):
super().__init__()
self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False)
if dim != dim_out:
self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) # 1x1 conv
else:
self.expand = nn.Identity()
def forward(self, x):
x = self.pool(x) # spatial downsample
x = self.expand(x) # expand chs
return x
class StridedConv(nn.Module):
""" downsample 2d as well
"""
def __init__(
self,
kernel_size=3,
stride=2,
padding=1,
in_chans=3,
embed_dim=768,
ln2d_permute=True
):
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
self.permute = ln2d_permute # TODO: disable
norm_layer = partial(get_norm_layer('layernorm2d'), eps=1e-6)
self.norm = norm_layer(in_chans) # affine over C
def forward(self, x):
x = self.norm(x)
x = self.proj(x)
return x
class MbConvLNBlock(nn.Module):
""" Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand)
"""
def __init__(
self,
in_chs: int,
out_chs: int,
stride: int = 1,
drop_path: float = 0.,
kernel_size: int = 3,
norm_layer: str = 'layernorm2d',
norm_eps: float = 1e-6,
act_layer: str = 'gelu',
expand_ratio: float = 4.0,
):
super(MbConvLNBlock, self).__init__()
self.stride, self.in_chs, self.out_chs = stride, in_chs, out_chs
mid_chs = make_divisible(out_chs * expand_ratio)
prenorm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
if stride == 2:
self.shortcut = Downsample2d(in_chs, out_chs, pool_type='avg', bias=True)
elif in_chs != out_chs:
self.shortcut = nn.Conv2d(in_chs, out_chs, 1, bias=True)
else:
self.shortcut = nn.Identity()
self.pre_norm = prenorm_act_layer(in_chs, apply_act=False)
self.down = nn.Identity()
self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=1, bias=True)
self.act1 = _create_act(act_layer, inplace=True)
self.act2 = _create_act(act_layer, inplace=True)
self.conv2_kxk = create_conv2d(mid_chs, mid_chs, kernel_size, stride=stride, dilation=1, groups=mid_chs, bias=True)
self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=True)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def init_weights(self, scheme=''):
named_apply(partial(_init_conv, scheme=scheme), self)
def forward(self, x):
shortcut = self.shortcut(x)
x = self.pre_norm(x)
x = self.down(x) # nn.Identity()
# 1x1 expansion conv & act
x = self.conv1_1x1(x)
x = self.act1(x)
# (strided) depthwise 3x3 conv & act
x = self.conv2_kxk(x)
x = self.act2(x)
# 1x1 linear projection to output width
x = self.conv3_1x1(x)
x = self.drop_path(x) + shortcut
return x
class MbConvStages(nn.Module):
""" MobileConv for stage 1 and stage 2 of ViTamin
"""
def __init__(
self,
cfg: VitCfg,
img_size: Union[int, Tuple[int, int]] = 224, # place holder
in_chans: int = 3,
):
super().__init__()
self.grad_checkpointing = False
self.stem = Stem(
in_chs=in_chans,
out_chs=cfg.stem_width,
)
stages = []
self.num_stages = len(cfg.embed_dim)
for s, dim in enumerate(cfg.embed_dim[:2]): # stage
blocks = []
stage_in_chs = cfg.embed_dim[s-1] if s>0 else cfg.stem_width
for d in range(cfg.depths[s]):
blocks += [MbConvLNBlock(
in_chs = stage_in_chs if d==0 else dim,
out_chs = dim,
stride = 2 if d == 0 else 1,
# cfg = cfg.conv_cfg,
)]
blocks = nn.Sequential(*blocks)
stages += [blocks]
self.stages = nn.ModuleList(stages)
self.pool = StridedConv(
stride=2,
in_chans=cfg.embed_dim[1],
embed_dim=cfg.embed_dim[2]
)
def forward(self, x):
x = self.stem(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
for stage in self.stages:
x = checkpoint_seq(stage, x)
x = checkpoint(self.pool, x)
else:
for stage in self.stages:
x = stage(x)
x = self.pool(x)
return x
class GeGluMlp(nn.Module):
def __init__(
self,
in_features,
hidden_features,
act_layer = None,
drop = 0.0,
):
super().__init__()
norm_layer = partial(get_norm_layer('layernorm'), eps=1e-6)
self.norm = norm_layer(in_features)
self.act = nn.GELU(approximate='tanh')
self.w0 = nn.Linear(in_features, hidden_features)
self.w1 = nn.Linear(in_features, hidden_features)
self.w2 = nn.Linear(hidden_features, in_features)
def forward(self, x):
x = self.norm(x)
x = self.act(self.w0(x)) * self.w1(x)
x = self.w2(x)
return x
class HybridEmbed(nn.Module):
""" CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
"""
def __init__(
self,
backbone,
img_size=256,
patch_size=1,
feature_size=None,
in_chans=3,
embed_dim=1024,
bias=True,
dynamic_img_pad=False,
):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.backbone = backbone
with torch.no_grad():
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
if isinstance(o, (list, tuple)):
o = o[-1] # last feature if backbone outputs list/tuple of features
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0
self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.proj = nn.Identity()
def forward(self, x):
x = self.backbone(x)
if isinstance(x, (list, tuple)):
x = x[-1] # last feature if backbone outputs list/tuple of features
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
return x
class Upsample2d(nn.Module):
def __init__(self, dim, dim_out):
super().__init__()
self.conv = torch.nn.Conv2d(dim, dim_out, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = self.conv(x)
return x
class InvMbConvLNBlock(nn.Module):
""" Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand)
"""
def __init__(
self,
in_chs: int,
out_chs: int,
stride: int = 1,
drop_path: float = 0.,
kernel_size: int = 3,
norm_layer: str = 'layernorm2d',
norm_eps: float = 1e-6,
act_layer: str = 'gelu',
expand_ratio: float = 4.0,
):
super().__init__()
self.stride, self.in_chs, self.out_chs = stride, in_chs, out_chs
mid_chs = make_divisible(out_chs * expand_ratio)
prenorm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
if stride == 2:
self.shortcut = Upsample2d(in_chs, out_chs)
elif in_chs != out_chs:
self.shortcut = nn.Conv2d(in_chs, out_chs, 1, bias=True)
else:
self.shortcut = nn.Identity()
self.pre_norm = prenorm_act_layer(in_chs, apply_act=False)
self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=1, bias=True)
self.act1 = _create_act(act_layer, inplace=True)
self.act2 = _create_act(act_layer, inplace=True)
self.up = Upsample2d(mid_chs, mid_chs) if stride == 2 else nn.Identity()
self.conv2_kxk = create_conv2d(mid_chs, mid_chs, kernel_size, stride=1, dilation=1, groups=mid_chs, bias=True)
self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=True)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def init_weights(self, scheme=''):
named_apply(partial(_init_conv, scheme=scheme), self)
def forward(self, x):
shortcut = self.shortcut(x)
x = self.pre_norm(x)
# 1x1 expansion conv & act
x = self.conv1_1x1(x)
x = self.act1(x)
x = self.up(x)
# (strided) depthwise 3x3 conv & act
x = self.conv2_kxk(x)
x = self.act2(x)
# 1x1 linear projection to output width
x = self.conv3_1x1(x)
x = self.drop_path(x) + shortcut
return x
class InvStem(nn.Module):
def __init__(
self,
in_chs: int,
out_chs: int,
act_layer: str = 'gelu',
norm_layer: str = 'layernorm2d',
norm_eps: float = 1e-6,
bias: bool = True,
):
super().__init__()
self.grad_checkpointing=False
norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
self.out_chs = out_chs
self.conv1 = Upsample2d(in_chs, in_chs)
self.norm1 = norm_act_layer(in_chs)
self.conv2 = create_conv2d(in_chs, out_chs, 3, stride=1, bias=bias)
named_apply(_init_conv, self)
def forward(self, x):
if self.grad_checkpointing:
x = checkpoint(self.conv1, x)
x = self.norm1(x)
x = checkpoint(self.conv2, x)
else:
x = self.conv1(x)
x = self.norm1(x)
x = self.conv2(x)
return x
class ViTaminDecoder(nn.Module):
def __init__(
self,
model,
num_query=0,
img_size=256,
drop_path=0.,
depths=(4, 2),
grad_ckpt=False,
):
super().__init__()
self.num_query = num_query
vit = timm.create_model(
model,
fc_norm=False,
patch_size=1,
drop_rate=0.0,
num_classes=0,
global_pool='',
pos_embed='none',
mlp_layer=GeGluMlp,
class_token=False,
reg_tokens=num_query,
img_size=img_size,
drop_path_rate=drop_path,
)
self.blocks = vit.blocks
self.norm_pre = vit.norm_pre
self.norm = vit.norm
embed_dims = {
'vitamin_base': (768, 256, 128),
'vitamin_large': (1024, 320, 160)
}[model]
self.up_conv1 = Upsample2d(embed_dims[0], embed_dims[1])
self.up_conv2 = nn.Sequential(*[
InvMbConvLNBlock(
in_chs=embed_dims[1],
out_chs=embed_dims[1],
stride=2 if d == 0 else 1)
for d in range(depths[0])]
)
self.up_conv3 = nn.Sequential(*[
InvMbConvLNBlock(
in_chs=embed_dims[1] if d == 0 else embed_dims[2],
out_chs=embed_dims[2],
stride=2 if d == 0 else 1)
for d in range(depths[1])]
)
self.up_conv4 = InvStem(in_chs=embed_dims[2], out_chs=3)
self.grad_ckpt = grad_ckpt
def get_last_param(self):
return self.up_conv4.conv2.weight
def forward(self, x):
B, L, C = x.shape
H = W = int((L-self.num_query) ** 0.5)
x = self.norm_pre(x)
if self.grad_ckpt:
x = checkpoint_seq(self.blocks, x)
x = x[:, self.num_query:, :]
x = self.norm(x)
x = x.view(B, H, W, C).permute(0, 3, 1, 2)
x = checkpoint(self.up_conv1, x)
x = checkpoint_seq(self.up_conv2, x)
x = checkpoint_seq(self.up_conv3, x)
else:
x = self.blocks(x)
x = x[:, self.num_query:, :]
x = self.norm(x)
x = x.view(B, H, W, C).permute(0, 3, 1, 2)
x = self.up_conv1(x)
x = self.up_conv2(x)
x = self.up_conv3(x)
x = self.up_conv4(x)
return x
def _create_vision_transformer(variant, pretrained=False, grad_ckpt=False, **kwargs) -> VisionTransformer:
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
if 'flexi' in variant:
# FIXME Google FlexiViT pretrained models have a strong preference for bilinear patch / embed
# interpolation, other pretrained models resize better w/ anti-aliased bicubic interpolation.
_filter_fn = partial(checkpoint_filter_fn, interpolation='bilinear', antialias=False)
else:
_filter_fn = checkpoint_filter_fn
return build_model_with_cfg(
VisionTransformer,
variant,
pretrained,
pretrained_filter_fn=_filter_fn,
**kwargs,
)
def _create_vision_transformer_hybrid(variant, backbone, pretrained=False, **kwargs):
embed_layer = partial(HybridEmbed, backbone=backbone)
kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set
return _create_vision_transformer(variant, pretrained=pretrained, embed_layer=embed_layer, **kwargs)
@register_model
def vitamin_small(pretrained=False, **kwargs) -> VisionTransformer:
stage_1_2 = MbConvStages(cfg=VitCfg(
embed_dim=(64, 128, 384),
depths=(2, 4, 1),
stem_width=64,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
stage3_args = dict(embed_dim=384, depth=14, num_heads=6, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid('vitamin_small', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
return model
@register_model
def vitamin_base(pretrained=False, **kwargs) -> VisionTransformer:
stage_1_2 = MbConvStages(cfg=VitCfg(
embed_dim=(128, 256, 768),
depths=(2, 4, 1),
stem_width=128,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
stage3_args = dict(embed_dim=768, depth=14, num_heads=12, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid('vitamin_base', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
return model
@register_model
def vitamin_base_256(pretrained=False, **kwargs) -> VisionTransformer:
stage_1_2 = MbConvStages(cfg=VitCfg(
embed_dim=(128, 256, 768),
depths=(2, 4, 1),
stem_width=128,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
stage3_args = dict(img_size=256, embed_dim=768, depth=14, num_heads=12, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid('vitamin_base_256', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
return model
@register_model
def vitamin_large(pretrained=False, **kwargs) -> VisionTransformer:
stage_1_2 = MbConvStages(cfg=VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
stage3_args = dict(embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid(
'vitamin_large', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
return model
# @register_model
# def vitamin_large_256(pretrained=False, **kwargs) -> VisionTransformer:
# backbone = MbConvStages(cfg=VitCfg(
# embed_dim=(160, 320, 1024),
# depths=(2, 4, 1),
# stem_width=160,
# conv_cfg = VitConvCfg(
# norm_layer='layernorm2d',
# norm_eps=1e-6,
# ),
# head_type='1d',
# ),
# )
# model_args = dict(img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
# model = _create_vision_transformer_hybrid(
# 'vitamin_large_256', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
# return model
# @register_model
# def vitamin_large_336(pretrained=False, **kwargs) -> VisionTransformer:
# backbone = MbConvStages(cfg=VitCfg(
# embed_dim=(160, 320, 1024),
# depths=(2, 4, 1),
# stem_width=160,
# conv_cfg = VitConvCfg(
# norm_layer='layernorm2d',
# norm_eps=1e-6,
# ),
# head_type='1d',
# ),
# )
# model_args = dict(img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
# model = _create_vision_transformer_hybrid(
# 'vitamin_large_336', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
# return model
# @register_model
# def vitamin_large_384(pretrained=False, **kwargs) -> VisionTransformer:
# backbone = MbConvStages(cfg=VitCfg(
# embed_dim=(160, 320, 1024),
# depths=(2, 4, 1),
# stem_width=160,
# conv_cfg = VitConvCfg(
# norm_layer='layernorm2d',
# norm_eps=1e-6,
# ),
# head_type='1d',
# ),
# )
# model_args = dict(img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
# model = _create_vision_transformer_hybrid(
# 'vitamin_large_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
# return model
# @register_model
# def vitamin_xlarge_256(pretrained=False, **kwargs) -> VisionTransformer:
# backbone = MbConvStages(cfg=VitCfg(
# embed_dim=(192, 384, 1152),
# depths=(2, 4, 1),
# stem_width=192,
# conv_cfg = VitConvCfg(
# norm_layer='layernorm2d',
# norm_eps=1e-6,
# ),
# head_type='1d',
# ),
# )
# model_args = dict(img_size=256, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
# model = _create_vision_transformer_hybrid(
# 'vitamin_xlarge_256', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
# return model
# @register_model
# def vitamin_xlarge_336(pretrained=False, **kwargs) -> VisionTransformer:
# backbone = MbConvStages(cfg=VitCfg(
# embed_dim=(192, 384, 1152),
# depths=(2, 4, 1),
# stem_width=192,
# conv_cfg = VitConvCfg(
# norm_layer='layernorm2d',
# norm_eps=1e-6,
# ),
# head_type='1d',
# ),
# )
# model_args = dict(img_size=336, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
# model = _create_vision_transformer_hybrid(
# 'vitamin_xlarge_256', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
# return model
# @register_model
# def vitamin_xlarge_384(pretrained=False, **kwargs) -> VisionTransformer:
# backbone = MbConvStages(cfg=VitCfg(
# embed_dim=(192, 384, 1152),
# depths=(2, 4, 1),
# stem_width=192,
# conv_cfg = VitConvCfg(
# norm_layer='layernorm2d',
# norm_eps=1e-6,
# ),
# head_type='1d',
# ),
# )
# model_args = dict(img_size=384, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
# model = _create_vision_transformer_hybrid(
# 'vitamin_xlarge_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
# return model
def count_params(model: nn.Module):
return sum([m.numel() for m in model.parameters()])
def count_stage_params(model: nn.Module, prefix='none'):
collections = []
for name, m in model.named_parameters():
print(name)
if name.startswith(prefix):
collections.append(m.numel())
return sum(collections)
if __name__ == "__main__":
# ViTaminDecoder('vitamin_base', img_size=256, patch_size=16)
# model = timm.create_model(
# 'vitamin_base',
# fc_norm=True,
# drop_rate=0.0,
# num_classes=0,
# global_pool='',
# mlp_layer=GeGluMlp,
# class_token=False,
# reg_tokens=32,
# img_size=256,
# patch_size=1,
# drop_path_rate=0.1,
# )
# print(model.has_class_token)
# print(model.num_prefix_tokens)
# print(model.pos_embed.shape)
Stem(64, 64)