File size: 6,886 Bytes
7385f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import timm
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from contextlib import nullcontext

from unitok.vitamin import GeGluMlp, ViTaminDecoder
from unitok.quant import VectorQuantizerM
from unitok.vqvae import AttnProjection


class UniTok(nn.Module):
    def __init__(self, args):
        super().__init__()

        self.num_query = args.num_query

        self.encoder = timm.create_model(
            args.model,
            patch_size=1,
            fc_norm=False,
            drop_rate=0.0,
            num_classes=0,
            global_pool='',
            pos_embed='none',
            class_token=False,
            mlp_layer=GeGluMlp,
            reg_tokens=args.num_query,
            img_size=args.img_size,
            drop_path_rate=args.drop_path,
        )
        self.encoder.pos_embed = nn.Parameter(torch.zeros(1, 1, self.encoder.embed_dim), requires_grad=False)

        if args.quant_proj == 'linear':
            self.quant_proj = nn.Linear(self.encoder.embed_dim, args.vocab_width)
        elif args.quant_proj == 'attn':
            self.quant_proj = AttnProjection(self.encoder.embed_dim, args.vocab_width, self.encoder.embed_dim // args.vocab_width)
        else:
            raise NotImplementedError

        self.quantizer = VectorQuantizerM(
            vocab_size=args.vocab_size,
            vocab_width=args.vocab_width,
            beta=args.vq_beta,
            use_entropy_loss=args.le > 0,
            entropy_temp=args.e_temp,
            num_codebooks=args.num_codebooks,
        )

        if args.quant_proj == 'linear':
            self.post_quant_proj = nn.Linear(args.vocab_width, self.encoder.embed_dim)
        elif args.quant_proj == 'attn':
            self.post_quant_proj = AttnProjection(args.vocab_width, self.encoder.embed_dim, self.encoder.embed_dim // args.vocab_width)
        else:
            raise NotImplementedError

        self.decoder = ViTaminDecoder(
            args.model,
            num_query=args.num_query,
            img_size=args.img_size,
            drop_path=args.drop_path,
            grad_ckpt=args.grad_ckpt,
        )

        text_cfg = {
            "width": args.text_width,
            "heads": args.text_heads,
            "layers": args.text_layers,
            "vocab_size": args.text_vocab_size,
            "context_length": args.text_context_length,
        }
        from open_clip.model import _build_text_tower
        self.text_encoder = _build_text_tower(args.embed_dim, text_cfg)

        self.fc_norm = nn.LayerNorm(self.encoder.embed_dim, eps=1e-6)
        self.projection = nn.Linear(self.encoder.embed_dim, args.embed_dim)
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.context_length = self.text_encoder.context_length
        self.vocab_size = self.text_encoder.vocab_size
        self.maybe_record_function = nullcontext

        self.text_no_grad = False
        self.encoder.set_grad_checkpointing(args.grad_ckpt)
        self.text_encoder.set_grad_checkpointing(args.grad_ckpt)

    def forward(self, img, vae_bs, text=None, ret_usages=False):
        img_tokens = self.encoder(img).float()
        with torch.cuda.amp.autocast(enabled=False):
            img_tokens = torch.utils.checkpoint.checkpoint(self.quant_proj, img_tokens, use_reentrant=False)
            img_tokens, vq_loss, entropy_loss, usages = self.quantizer(img_tokens)
            img_tokens = torch.utils.checkpoint.checkpoint(self.post_quant_proj, img_tokens, use_reentrant=False)
        img_rec = self.decoder(img_tokens[:vae_bs]).float()

        clip_visual = img_tokens.mean(dim=1)
        clip_visual = self.projection(self.fc_norm(clip_visual))
        clip_visual = F.normalize(clip_visual, dim=-1)
        if text is not None:
            clip_text = self.text_encoder(text)
            clip_text = F.normalize(clip_text, dim=-1)
        else:
            clip_text = None

        output_dict = {
            "img_rec": img_rec,
            "vq_loss": vq_loss,
            "entropy_loss": entropy_loss,
            "codebook_usages": usages,
            "clip_image_features": clip_visual,
            "clip_text_features": clip_text,
            "logit_scale": self.logit_scale.exp()
        }
        return output_dict

    def encode_image(self, image, normalize: bool = False):
        img_tokens = self.encoder(image)
        img_tokens = self.quant_proj(img_tokens)
        img_indices = self.quantizer.f_to_idx(img_tokens)
        img_tokens = self.quantizer.idx_to_f(img_indices)
        img_tokens = self.post_quant_proj(img_tokens)
        features = img_tokens.mean(dim=1)
        features = self.projection(self.fc_norm(features))
        return F.normalize(features, dim=-1) if normalize else features

    def encode_text(self, text, normalize: bool = False):
        features = self.text_encoder(text)
        return F.normalize(features, dim=-1) if normalize else features

    def img_to_idx(self, img):
        features = self.encoder(img).float()
        features = self.quant_proj(features)
        return self.quantizer.f_to_idx(features)

    def idx_to_img(self, indices):
        features = self.quantizer.idx_to_f(indices)
        features = self.post_quant_proj(features)
        img = self.decoder(features).clamp_(-1, 1)
        return img

    def img_to_reconstructed_img(self, image) -> torch.Tensor:
        img_tokens = self.encoder(image)
        img_tokens = self.quant_proj(img_tokens)
        img_tokens, _, _, _ = self.quantizer(img_tokens)
        img_tokens = self.post_quant_proj(img_tokens)
        img_rec = self.decoder(img_tokens).clamp_(-1, 1)
        return img_rec

    def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True, unlock_text_proj=False):
        self.text.lock(unlocked_layers, freeze_layer_norm, unlock_text_proj)
        self.text_no_grad = True


if __name__ == '__main__':
    model = timm.create_model(
        'vitamin_base',
        patch_size=1,
        fc_norm=True,
        drop_rate=0.0,
        num_classes=0,
        global_pool='',
        pos_embed='none',
        class_token=False,
        mlp_layer=GeGluMlp,
        reg_tokens=0,
        img_size=256,
        drop_path_rate=0.1,
    )
    model.pos_embed = nn.Parameter(torch.zeros(1, 1, model.embed_dim), requires_grad=False)

    model_dict = model.state_dict()
    ckpt_dict = torch.load('ViTamin-B/pytorch_model.bin')
    visual_dict = dict()
    for k, v in ckpt_dict.items():
        if k.startswith('visual.'):
            if 'head' in k or 'pos_embed' in k:
                continue
            new_k = k.replace('visual.trunk.', '')
            visual_dict[new_k] = v

    model.load_state_dict(visual_dict, strict=False)
    print(set(model_dict.keys()) - set(visual_dict.keys()))
    print(set(visual_dict.keys() - set(model_dict.keys())))