# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # A MinGPT + Lightning + xFormers example Code from Sean Naren (@seannaren) # This is an hommage to https://github.com/karpathy/minGPT import math import os import pytorch_lightning as pl import torch import torch.nn as nn from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.utilities import rank_zero_info from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset, RandomSampler from xformers.factory.model_factory import xFormer, xFormerConfig class GPT(pl.LightningModule): """the full GPT language model, with a context size of block_size""" def __init__( self, vocab_size, weight_decay=0.1, betas=(0.9, 0.95), learning_rate=6e-4, n_embd=512, block_size=128, n_layer=8, n_head=8, resid_pdrop=0.1, attn_pdrop=0.1, mlp_pdrop=0.1, attention="scaled_dot_product", hidden_layer_multiplier=4, warmup_tokens=20, final_tokens=1000, ): super().__init__() # auto creates self.hparams from the method signature self.save_hyperparameters() # A list of the encoder or decoder blocks which constitute the Transformer. xformer_config = [ { "reversible": False, # Turn on to test the effect of using reversible layers "block_type": "encoder", "num_layers": self.hparams.n_layer, "dim_model": self.hparams.n_embd, "residual_norm_style": "post", "position_encoding_config": { "name": "vocab", "seq_len": self.hparams.block_size, "vocab_size": self.hparams.vocab_size, }, "multi_head_config": { "num_heads": self.hparams.n_head, "residual_dropout": self.hparams.resid_pdrop, "use_rotary_embeddings": True, "attention": { "name": self.hparams.attention, "dropout": self.hparams.attn_pdrop, "causal": True, "seq_len": self.hparams.block_size, "num_rules": self.hparams.n_head, }, }, "feedforward_config": { "name": "MLP", "dropout": self.hparams.mlp_pdrop, "activation": "gelu", "hidden_layer_multiplier": self.hparams.hidden_layer_multiplier, }, } ] config = xFormerConfig(xformer_config) config.weight_init = "small" self.model = xFormer.from_config(config) # decoder head self.ln_f = nn.LayerNorm(self.hparams.n_embd) self.head = nn.Linear(self.hparams.n_embd, self.hparams.vocab_size, bias=False) self.block_size = self.hparams.block_size self.apply(self._init_weights) self._tokens_seen = 0 def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) # Reset the token counter self._tokens_seen = 0 def get_block_size(self): return self.block_size def configure_optimizers(self): # Create the optimizer and the training schedule: # - Handle the per-param weight decay no_decay = ["bias", "LayerNorm.weight"] params_decay = [ p for n, p in self.named_parameters() if not any(nd in n for nd in no_decay) ] params_nodecay = [ p for n, p in self.named_parameters() if any(nd in n for nd in no_decay) ] optim_groups = [ {"params": params_decay, "weight_decay": self.hparams.weight_decay}, {"params": params_nodecay, "weight_decay": 0.0}, ] # - Start with a warm up, ramp up then cosine optimizer = torch.optim.AdamW( optim_groups, lr=self.hparams.learning_rate, betas=self.hparams.betas ) def update_lr(*_): config = self.hparams if self._tokens_seen < config.warmup_tokens: # linear warmup lr_mult = float(self._tokens_seen) / float(max(1, config.warmup_tokens)) lr_mult = max(lr_mult, 1e-2) # could be that we've not seen any yet else: # cosine learning rate decay progress = float(self._tokens_seen - config.warmup_tokens) / float( max(1, config.final_tokens - config.warmup_tokens) ) lr_mult = max(0.1, 0.5 * (1.0 + math.cos(math.pi * progress))) return lr_mult lr_scheduler = { "scheduler": torch.optim.lr_scheduler.LambdaLR( optimizer, lr_lambda=[update_lr, update_lr], ), "name": "learning_rate", "interval": "step", # The unit of the scheduler's step size "frequency": 1, # The frequency of the scheduler } return [optimizer], [lr_scheduler] def forward(self, src): # predict the next tokens (in latent space) prediction = self.model(src) # translate the predictions into tokens prediction = self.ln_f(prediction) logits = self.head(prediction) return logits def training_step(self, batch, _): src, targets = batch # Update the tokens we've seen (tracked for LR scheduling) self._tokens_seen += (src >= 0).numel() # same action as inference logits = self(src) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) self.logger.log_metrics( { "train_loss": loss.mean(), "learning_rate": self.lr_schedulers().get_last_lr()[0], }, step=trainer.global_step, ) return loss class CharDataset(Dataset): def __init__(self, data, block_size): chars = list(set(data)) data_size, vocab_size = len(data), len(chars) rank_zero_info("data has %d characters, %d unique." % (data_size, vocab_size)) self.stoi = {ch: i for i, ch in enumerate(chars)} self.itos = {i: ch for i, ch in enumerate(chars)} self.block_size = block_size self.vocab_size = vocab_size self.data = data def __len__(self): return len(self.data) - self.block_size def __getitem__(self, i): chunk = self.data[i : i + self.block_size + 1] dix = [self.stoi[s] for s in chunk] # src and target are off by one, we want the model to predict the next word x = torch.tensor(dix[:-1], dtype=torch.long) y = torch.tensor(dix[1:], dtype=torch.long) return x, y def to_tokens(self, message, device): return torch.tensor([self.stoi[s] for s in message], dtype=torch.long)[ None, ... ].to(device) def from_tokens(self, tokens): return "".join([self.itos[int(i)] for i in tokens]) @torch.no_grad() def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): """ take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in the sequence, feeding the predictions back into the model each time. Clearly the sampling has quadratic complexity unlike an RNN that is only linear, and has a finite context window of block_size, unlike an RNN that has an infinite context window. """ block_size = model.get_block_size() model.eval() # CREDITS: https://github.com/karpathy/minGPT/blob/master/mingpt/utils.py def top_k_logits(logits, k): v, _ = torch.topk(logits, k) out = logits.clone() out[out < v[:, [-1]]] = -float("Inf") return out for _ in range(steps): x_cond = ( x if x.size(1) <= block_size else x[:, -block_size:] ) # crop context if needed logits = model(x_cond) # pluck the logits at the final step and scale by temperature logits = logits[:, -1, :] / temperature # optionally crop probabilities to only the top k options if top_k is not None: logits = top_k_logits(logits, top_k) # apply softmax to convert to probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution or take the most likely if sample: ix = torch.multinomial(probs, num_samples=1) else: _, ix = torch.topk(probs, k=1, dim=-1) # append to the sequence and continue x = torch.cat((x, ix), dim=1) return x[0] # escape the batch dimension if __name__ == "__main__": seed_everything(42) # Adjust batch depending on the available memory on your machine. # You can also use reversible layers to save memory REF_BATCH = 512 BATCH = 128 WORKERS = 4 EPOCHS = 1 BLOCK = 128 WARMUP = 20 if not os.path.exists("input.txt"): os.system( "wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt" ) text = open("input.txt", "r").read() train_dataset = CharDataset( text, BLOCK ) # one line of poem is roughly 50 characters random_sampler = RandomSampler(train_dataset) train_loader = DataLoader( train_dataset, sampler=random_sampler, batch_size=BATCH, num_workers=WORKERS, pin_memory=True, ) model = GPT( vocab_size=train_dataset.vocab_size, block_size=train_dataset.block_size, attention="scaled_dot_product", warmup_tokens=REF_BATCH * WARMUP, final_tokens=EPOCHS * len(train_dataset) * BLOCK, ) print(model) trainer = Trainer( gpusdevices=1, accelerator="gpu", max_epochs=EPOCHS, precision=16, log_every_n_steps=1, accumulate_grad_batches=REF_BATCH // BATCH, ) trainer.fit(model, train_loader) # Sample from the model, let it predict a paragraph context = "Friends of my soul" # prime with something x = train_dataset.to_tokens(context, model.device) y = sample(model, x, steps=1000, temperature=1.0, sample=True, top_k=10) print(train_dataset.from_tokens(y))