Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | |
# | |
# This source code is licensed under the BSD license found in the | |
# LICENSE file in the root directory of this source tree. | |
from dataclasses import asdict, dataclass | |
from typing import Optional, Type, TypeVar | |
import torch | |
Self = TypeVar("Self", bound="SimplicialEmbedding") | |
class SimplicialEmbeddingConfig: | |
L: int | |
temperature: float | |
class SimplicialEmbedding(torch.nn.Module): | |
""" | |
An implementation of the "Simplicial Embeddings"_, as proposed by Lavoie et. al | |
Arguments: | |
- L: the number of embedding chunks | |
- temperature: optional scaling parameter for the softmax operation. | |
A small (<1.) temperature will lead to a sparse representation (up to one-hot), | |
while a large (>1.) temperature will make the vector more uniform | |
_"Simplicial Embeddings": https://arxiv.org/pdf/2204.00616.pdf | |
""" | |
def __init__(self, L: int, temperature: Optional[float] = None) -> None: | |
super().__init__() | |
self.L = L | |
self.temperature = temperature | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
assert ( | |
x.shape[-1] % self.L == 0 | |
), f"The embedding dimension {x.shape[-1]} is not divisible by the chosen L parameter {self.L}" | |
# Separate the input tensor into V chunks | |
B, C, E = x.shape | |
V = E // self.L | |
Vs = x.reshape(B, C, self.L, V) | |
# Softmax normalize them, with the proposed temperature | |
# This is done over the last dimension, so only within Vs | |
if self.temperature is not None: | |
Vs /= self.temperature | |
Vs = torch.nn.functional.softmax(Vs, dim=-1) | |
# Concatenate back and return | |
return Vs.reshape(B, C, E) | |
def from_config(cls: Type[Self], config: SimplicialEmbeddingConfig) -> Self: | |
# Generate the class inputs from the config | |
fields = asdict(config) | |
return cls(**fields) | |