Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | |
# | |
# This source code is licensed under the BSD license found in the | |
# LICENSE file in the root directory of this source tree. | |
import random | |
import pytest | |
import torch | |
from xformers.components.attention import NystromAttention, ScaledDotProduct | |
from xformers.components.attention.utils import maybe_merge_masks | |
def test_nystrom_attention_close_to_sdp( | |
pinverse_original_init: bool, | |
use_razavi_pinverse: bool, | |
num_landmarks: int, | |
): | |
# TODO: conv_kernel_size parameter not set to None fails this test. Investigate. | |
b, s, d = 2, 900, 40 | |
num_heads = 2 | |
seed = 42 | |
torch.random.manual_seed(seed) | |
random.seed(seed) | |
nystrom_config = { | |
"name": "nystrom", | |
"dropout": 0.0, | |
"num_landmarks": num_landmarks, | |
"num_heads": num_heads, | |
"pinverse_original_init": pinverse_original_init, | |
"use_razavi_pinverse": use_razavi_pinverse, | |
} | |
sdp_config = { | |
"name": "scaled_dot_product", | |
"dropout": 0.0, | |
} | |
a = torch.rand(b, s, d) | |
def test_close_to_sdp(): | |
# Make sure that Nystrom and Normal attention are not too far off. | |
nystrom_attention = NystromAttention(**nystrom_config) | |
sdp_attention = ScaledDotProduct(**sdp_config) | |
r_nystrom = nystrom_attention(a, a, a, att_mask=None) | |
r_sdp = sdp_attention(a, a, a, att_mask=None) | |
assert torch.allclose(r_nystrom, r_sdp, rtol=0.005, atol=1e-2) | |
# Make sure that Nystrom and Normal attention are not too far off. | |
nystrom_attention = NystromAttention(**nystrom_config) | |
sdp_attention = ScaledDotProduct(**sdp_config) | |
r_nystrom = nystrom_attention(a, a, a, att_mask=None) | |
r_sdp = sdp_attention(a, a, a, att_mask=None) | |
assert torch.allclose(r_nystrom, r_sdp, rtol=0.005, atol=1e-2) | |
test_close_to_sdp() | |
def test_nystrom_attention( | |
pinverse_original_init: bool, | |
use_razavi_pinverse: bool, | |
num_landmarks: int, | |
): | |
# TODO: conv_kernel_size parameter not set to None fails this test. Investigate. | |
b, s, d = 2, 900, 40 | |
num_heads = 2 | |
seed = 42 | |
torch.random.manual_seed(seed) | |
random.seed(seed) | |
nystrom_config = { | |
"name": "nystrom", | |
"dropout": 0.0, | |
"num_landmarks": num_landmarks, | |
"num_heads": num_heads, | |
"pinverse_original_init": pinverse_original_init, | |
"use_razavi_pinverse": use_razavi_pinverse, | |
} | |
sdp_config = { | |
"name": "scaled_dot_product", | |
"dropout": 0.0, | |
} | |
a = torch.rand(b, s, d) | |
def test_att_mask_ignored(): | |
# If an sxs attention mask is passed in, it should be ignored. | |
# Results should be the same as if no mask was passed in. | |
nystrom_attention = NystromAttention(**nystrom_config) | |
sdp_attention = ScaledDotProduct(**sdp_config) | |
key_padding_mask = None | |
att_mask = torch.randint(0, 2, (s, s)).to(dtype=torch.bool) | |
sdp_mask = maybe_merge_masks( | |
att_mask=None, | |
key_padding_mask=key_padding_mask, | |
batch_size=b // num_heads, | |
src_len=s, | |
num_heads=num_heads, | |
) | |
r_nystrom = nystrom_attention( | |
a, a, a, att_mask=att_mask, key_padding_mask=key_padding_mask | |
) | |
r_sdp = sdp_attention(a, a, a, att_mask=sdp_mask) | |
assert torch.allclose(r_nystrom, r_sdp, rtol=0.005, atol=1e-2) | |
def test_masking(): | |
# FIXME | |
# nystrom_config["causal"] = True | |
# sdp_config["causal"] = True | |
nystrom_attention = NystromAttention(**nystrom_config) | |
sdp_attention = ScaledDotProduct(**sdp_config) | |
key_padding_mask = torch.rand((b // num_heads, s)) > 0.1 | |
att_mask = None | |
mask = maybe_merge_masks( | |
att_mask, | |
key_padding_mask, | |
batch_size=b // num_heads, | |
src_len=s, | |
num_heads=num_heads, | |
) | |
r_nystrom = nystrom_attention(a, a, a, key_padding_mask=key_padding_mask) | |
r_sdp = sdp_attention(a, a, a, att_mask=mask) | |
# Not very close, but more so testing functionality. | |
assert torch.allclose( | |
r_nystrom, r_sdp, rtol=0.1, atol=0.5 | |
), f"max diff {torch.max(torch.abs(r_nystrom-r_sdp))}" | |
# Error when key padding mask doesn't have expected dimensions. | |
key_padding_mask = torch.randint(0, 2, (s, b)).to(dtype=torch.bool) | |
with pytest.raises(AssertionError): | |
nystrom_attention(a, a, a, key_padding_mask=key_padding_mask) | |
test_att_mask_ignored() | |
test_masking() | |