FlexTheAi's picture
Upload folder using huggingface_hub
e202b16 verified
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# A MinGPT + Lightning + xFormers example Code from Sean Naren (@seannaren)
# This is an hommage to https://github.com/karpathy/minGPT
import math
import os
import pytorch_lightning as pl
import torch
import torch.nn as nn
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.utilities import rank_zero_info
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset, RandomSampler
from xformers.factory.model_factory import xFormer, xFormerConfig
class GPT(pl.LightningModule):
"""the full GPT language model, with a context size of block_size"""
def __init__(
self,
vocab_size,
weight_decay=0.1,
betas=(0.9, 0.95),
learning_rate=6e-4,
n_embd=512,
block_size=128,
n_layer=8,
n_head=8,
resid_pdrop=0.1,
attn_pdrop=0.1,
mlp_pdrop=0.1,
attention="scaled_dot_product",
hidden_layer_multiplier=4,
warmup_tokens=20,
final_tokens=1000,
):
super().__init__()
# auto creates self.hparams from the method signature
self.save_hyperparameters()
# A list of the encoder or decoder blocks which constitute the Transformer.
xformer_config = [
{
"reversible": False, # Turn on to test the effect of using reversible layers
"block_type": "encoder",
"num_layers": self.hparams.n_layer,
"dim_model": self.hparams.n_embd,
"residual_norm_style": "post",
"position_encoding_config": {
"name": "vocab",
"seq_len": self.hparams.block_size,
"vocab_size": self.hparams.vocab_size,
},
"multi_head_config": {
"num_heads": self.hparams.n_head,
"residual_dropout": self.hparams.resid_pdrop,
"use_rotary_embeddings": True,
"attention": {
"name": self.hparams.attention,
"dropout": self.hparams.attn_pdrop,
"causal": True,
"seq_len": self.hparams.block_size,
"num_rules": self.hparams.n_head,
},
},
"feedforward_config": {
"name": "MLP",
"dropout": self.hparams.mlp_pdrop,
"activation": "gelu",
"hidden_layer_multiplier": self.hparams.hidden_layer_multiplier,
},
}
]
config = xFormerConfig(xformer_config)
config.weight_init = "small"
self.model = xFormer.from_config(config)
# decoder head
self.ln_f = nn.LayerNorm(self.hparams.n_embd)
self.head = nn.Linear(self.hparams.n_embd, self.hparams.vocab_size, bias=False)
self.block_size = self.hparams.block_size
self.apply(self._init_weights)
self._tokens_seen = 0
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# Reset the token counter
self._tokens_seen = 0
def get_block_size(self):
return self.block_size
def configure_optimizers(self):
# Create the optimizer and the training schedule:
# - Handle the per-param weight decay
no_decay = ["bias", "LayerNorm.weight"]
params_decay = [
p for n, p in self.named_parameters() if not any(nd in n for nd in no_decay)
]
params_nodecay = [
p for n, p in self.named_parameters() if any(nd in n for nd in no_decay)
]
optim_groups = [
{"params": params_decay, "weight_decay": self.hparams.weight_decay},
{"params": params_nodecay, "weight_decay": 0.0},
]
# - Start with a warm up, ramp up then cosine
optimizer = torch.optim.AdamW(
optim_groups, lr=self.hparams.learning_rate, betas=self.hparams.betas
)
def update_lr(*_):
config = self.hparams
if self._tokens_seen < config.warmup_tokens:
# linear warmup
lr_mult = float(self._tokens_seen) / float(max(1, config.warmup_tokens))
lr_mult = max(lr_mult, 1e-2) # could be that we've not seen any yet
else:
# cosine learning rate decay
progress = float(self._tokens_seen - config.warmup_tokens) / float(
max(1, config.final_tokens - config.warmup_tokens)
)
lr_mult = max(0.1, 0.5 * (1.0 + math.cos(math.pi * progress)))
return lr_mult
lr_scheduler = {
"scheduler": torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=[update_lr, update_lr],
),
"name": "learning_rate",
"interval": "step", # The unit of the scheduler's step size
"frequency": 1, # The frequency of the scheduler
}
return [optimizer], [lr_scheduler]
def forward(self, src):
# predict the next tokens (in latent space)
prediction = self.model(src)
# translate the predictions into tokens
prediction = self.ln_f(prediction)
logits = self.head(prediction)
return logits
def training_step(self, batch, _):
src, targets = batch
# Update the tokens we've seen (tracked for LR scheduling)
self._tokens_seen += (src >= 0).numel()
# same action as inference
logits = self(src)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
self.logger.log_metrics(
{
"train_loss": loss.mean(),
"learning_rate": self.lr_schedulers().get_last_lr()[0],
},
step=trainer.global_step,
)
return loss
class CharDataset(Dataset):
def __init__(self, data, block_size):
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
rank_zero_info("data has %d characters, %d unique." % (data_size, vocab_size))
self.stoi = {ch: i for i, ch in enumerate(chars)}
self.itos = {i: ch for i, ch in enumerate(chars)}
self.block_size = block_size
self.vocab_size = vocab_size
self.data = data
def __len__(self):
return len(self.data) - self.block_size
def __getitem__(self, i):
chunk = self.data[i : i + self.block_size + 1]
dix = [self.stoi[s] for s in chunk]
# src and target are off by one, we want the model to predict the next word
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
return x, y
def to_tokens(self, message, device):
return torch.tensor([self.stoi[s] for s in message], dtype=torch.long)[
None, ...
].to(device)
def from_tokens(self, tokens):
return "".join([self.itos[int(i)] for i in tokens])
@torch.no_grad()
def sample(model, x, steps, temperature=1.0, sample=False, top_k=None):
"""
take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in
the sequence, feeding the predictions back into the model each time. Clearly the sampling
has quadratic complexity unlike an RNN that is only linear, and has a finite context window
of block_size, unlike an RNN that has an infinite context window.
"""
block_size = model.get_block_size()
model.eval()
# CREDITS: https://github.com/karpathy/minGPT/blob/master/mingpt/utils.py
def top_k_logits(logits, k):
v, _ = torch.topk(logits, k)
out = logits.clone()
out[out < v[:, [-1]]] = -float("Inf")
return out
for _ in range(steps):
x_cond = (
x if x.size(1) <= block_size else x[:, -block_size:]
) # crop context if needed
logits = model(x_cond)
# pluck the logits at the final step and scale by temperature
logits = logits[:, -1, :] / temperature
# optionally crop probabilities to only the top k options
if top_k is not None:
logits = top_k_logits(logits, top_k)
# apply softmax to convert to probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution or take the most likely
if sample:
ix = torch.multinomial(probs, num_samples=1)
else:
_, ix = torch.topk(probs, k=1, dim=-1)
# append to the sequence and continue
x = torch.cat((x, ix), dim=1)
return x[0] # escape the batch dimension
if __name__ == "__main__":
seed_everything(42)
# Adjust batch depending on the available memory on your machine.
# You can also use reversible layers to save memory
REF_BATCH = 512
BATCH = 128
WORKERS = 4
EPOCHS = 1
BLOCK = 128
WARMUP = 20
if not os.path.exists("input.txt"):
os.system(
"wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
)
text = open("input.txt", "r").read()
train_dataset = CharDataset(
text, BLOCK
) # one line of poem is roughly 50 characters
random_sampler = RandomSampler(train_dataset)
train_loader = DataLoader(
train_dataset,
sampler=random_sampler,
batch_size=BATCH,
num_workers=WORKERS,
pin_memory=True,
)
model = GPT(
vocab_size=train_dataset.vocab_size,
block_size=train_dataset.block_size,
attention="scaled_dot_product",
warmup_tokens=REF_BATCH * WARMUP,
final_tokens=EPOCHS * len(train_dataset) * BLOCK,
)
print(model)
trainer = Trainer(
gpusdevices=1,
accelerator="gpu",
max_epochs=EPOCHS,
precision=16,
log_every_n_steps=1,
accumulate_grad_batches=REF_BATCH // BATCH,
)
trainer.fit(model, train_loader)
# Sample from the model, let it predict a paragraph
context = "Friends of my soul" # prime with something
x = train_dataset.to_tokens(context, model.device)
y = sample(model, x, steps=1000, temperature=1.0, sample=True, top_k=10)
print(train_dataset.from_tokens(y))