File size: 8,523 Bytes
e202b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

import functools

import pytest
import torch

import xformers
from xformers.components import MultiHeadDispatch
from xformers.components.attention import build_attention
from xformers.components.attention.attention_patterns import block_sparsify_tensor


def catch_oor(fn):
    @functools.wraps(fn)
    def fn_and_catch_oor(*args, **kwargs):
        from triton import OutOfResources

        try:
            return fn(*args, **kwargs)
        except OutOfResources as e:
            pytest.skip(str(e))
            return None

    return fn_and_catch_oor


# CREDITS:
# Tests from, very lightly changed
# https://github.com/openai/triton/blob/master/python/test/unit/operators/test_blocksparse.py
# Initially copied here folowing a fork from the matmul kernel


_triton_available = xformers._is_triton_available()
_matmul_types = []

if _triton_available:
    try:
        import triton  # noqa: F401
        from triton.ops.blocksparse import matmul as blocksparse_matmul
        from triton.ops.blocksparse import softmax as blocksparse_softmax

        from xformers.components.attention import BlockSparseAttention

        _matmul_types = ["sdd", "dsd", "dds"]
    except (ImportError, ModuleNotFoundError) as e:
        import logging

        logging.warning(f"Triton is not available: {e}. Some tests will be skipped")
        _triton_available = False


def mask_tensor(x, mask, block, value=0):
    ret = x.clone()
    for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)):
        ret[:, h, i * block : (i + 1) * block, j * block : (j + 1) * block] = value
    return ret


@pytest.mark.skipif(not _triton_available, reason="Triton requires a recent CUDA gpu")
@pytest.mark.parametrize("MODE", _matmul_types)
@pytest.mark.parametrize("TRANS_A", [False, True])
@pytest.mark.parametrize("TRANS_B", [False, True])
@pytest.mark.parametrize("BLOCK", [16, 32, 64])
@pytest.mark.parametrize("DTYPE", [torch.float16])
@catch_oor
def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE, Z=32, H=2, M=512, N=384, K=256):
    # set seed
    torch.random.manual_seed(0)

    # create inputs
    a = torch.randn(
        (Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device="cuda"
    )
    b = torch.randn(
        (Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device="cuda"
    )
    shape = {
        "sdd": (M, N),
        "dsd": (a.shape[2], a.shape[3]),
        "dds": (b.shape[2], b.shape[3]),
    }[MODE]
    layout = torch.randint(2, (H, shape[0] // BLOCK, shape[1] // BLOCK))

    # triton result
    op = blocksparse_matmul(
        layout,
        BLOCK,
        MODE,
        trans_a=TRANS_A,
        trans_b=TRANS_B,
        device=torch.device("cuda"),
    )
    ra = block_sparsify_tensor(a, layout, BLOCK) if MODE == "dsd" else a
    rb = block_sparsify_tensor(b, layout, BLOCK) if MODE == "dds" else b
    rc = op(ra, rb)

    # torch result
    ta = mask_tensor(a, layout, BLOCK) if MODE == "dsd" else a
    tb = mask_tensor(b, layout, BLOCK) if MODE == "dds" else b
    ta = ta.transpose(2, 3) if TRANS_A else ta
    tb = tb.transpose(2, 3) if TRANS_B else tb
    tc = torch.matmul(ta, tb)
    tc = mask_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc
    tc = block_sparsify_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc

    # compare
    torch.testing.assert_close(rc, tc)


@pytest.mark.skipif(not _triton_available, reason="Triton requires a recent CUDA gpu")
@pytest.mark.parametrize("BLOCK", [32, 128])
@pytest.mark.parametrize("WIDTH", [256, 576, 1024, 1792])
@pytest.mark.parametrize("DTYPE", [torch.float16, torch.float32])
def test_softmax(BLOCK, WIDTH, DTYPE):
    # set seed
    torch.random.manual_seed(0)
    Z, H, M, N = 2, 4, WIDTH, WIDTH
    scale = 0.4

    # create inputs
    layout = torch.randint(2, (H, M // BLOCK, N // BLOCK))
    x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device="cuda")

    # triton result
    op = blocksparse_softmax(layout, BLOCK, device=torch.device("cuda"))
    tx = block_sparsify_tensor(x, layout, BLOCK)
    ty = op(tx, scale=scale)

    # torch result
    rx = mask_tensor(x, layout, BLOCK, value=float("-inf"))
    rx = rx[:, :, : (M // BLOCK) * BLOCK, : (M // BLOCK) * BLOCK]

    ry = torch.softmax(rx * scale, -1)
    ry = block_sparsify_tensor(ry, layout, BLOCK)

    # compare
    torch.testing.assert_close(ry, ty)


@pytest.mark.skipif(not _triton_available, reason="Triton requires a recent CUDA gpu")
@pytest.mark.parametrize("block", [32, 43, 128])  # 16, 32,
@pytest.mark.parametrize("dtype", [torch.float16])
def test_attention_fwd_bwd(
    block,
    dtype,
    input_scale=1.0,
    scale=1 / 8.0,
    n_ctx=384,
    batch_size=2,
    n_heads=2,
):
    # inputs
    head_dim = 64
    qkv_shape = (batch_size, n_heads, n_ctx, head_dim)
    qkvs = [
        torch.nn.Parameter(input_scale * torch.randn(qkv_shape), requires_grad=True)
        .to(dtype)
        .cuda()
        for _ in range(3)
    ]

    def loss_fn(x):
        return (x**2).mean()

    # Triton:
    n_blocks = n_ctx // block
    layout = torch.ones([n_heads, n_blocks, n_blocks], dtype=torch.long)
    query, key, value = [x.clone() for x in qkvs]
    query.retain_grad()
    key.retain_grad()
    value.retain_grad()
    if block not in [16, 32, 64, 128]:
        # Check that unsupported dimensions are caught
        with pytest.raises(AssertionError):
            _ = BlockSparseAttention(layout, block)
    else:
        block_sparse_attention = BlockSparseAttention(layout, block)
        attn_out = block_sparse_attention(q=query, k=key, v=value, scale=scale)

        # ad hoc loss
        loss = loss_fn(attn_out)
        loss.backward()
        grads = [query.grad, key.grad, value.grad]

        # Torch version:
        torch_q, torch_k, torch_v = [x.clone() for x in qkvs]
        torch_q = torch_q * scale
        torch_q.retain_grad()
        torch_k.retain_grad()
        torch_v.retain_grad()
        scores = scale * torch.einsum("bhsd,bhtd->bhst", torch_q, torch_k)
        probs = torch.softmax(scores, dim=-1)
        torch_attn_out = torch.einsum("bhst,bhtd->bhsd", probs, torch_v)

        # ad hoc loss
        torch_loss = loss_fn(torch_attn_out)
        torch_loss.backward()
        torch_grads = [torch_q.grad, torch_k.grad, torch_v.grad]

        # comparison
        torch.testing.assert_close(
            loss, torch_loss, msg=f"Triton loss {loss} and torch loss {torch_loss}"
        )

        for g1, g2 in zip(grads, torch_grads):
            torch.testing.assert_close(
                torch.norm(g1),
                torch.norm(g2),
                msg=f"Triton grad {torch.norm(g1).item()} and torch grad {torch.norm(g2).item()}",
            )


@pytest.mark.skipif(not _triton_available, reason="Triton requires a recent CUDA gpu")
@pytest.mark.parametrize("dtype", [torch.float16])
def test_blocksparse_attention_parity(dtype):
    def _reset_seeds():
        torch.manual_seed(0)

    seq = 64
    model = 128
    heads = 4
    block_size = 16
    batch_size = 2
    batched_dim = heads * batch_size
    dim_head = model // heads

    test_config = {
        "dropout": 0.0,
        "causal": False,
        "seq_len": seq,
        "num_heads": 4,
        "dim_head": dim_head,
        "block_size": block_size,
        "layout": torch.ones(seq // block_size, seq // block_size, dtype=torch.long),
    }

    inputs = torch.rand(batched_dim, seq, model, device="cuda", dtype=dtype)

    _reset_seeds()
    test_config["name"] = "scaled_dot_product"
    attention_sdp = build_attention(test_config)
    multi_head_sdp = MultiHeadDispatch(
        seq_len=seq,
        dim_model=model,
        residual_dropout=0.0,
        num_heads=heads,
        attention=attention_sdp,
    ).to(device=torch.device("cuda"), dtype=dtype)
    r_sdp = multi_head_sdp(inputs, inputs, inputs)

    _reset_seeds()
    test_config["name"] = "blocksparse"
    attention_blocksparse = build_attention(test_config)
    multi_head_blocksparse = MultiHeadDispatch(
        seq_len=seq,
        dim_model=model,
        residual_dropout=0.0,
        num_heads=heads,
        attention=attention_blocksparse,
    ).to(device=torch.device("cuda"), dtype=dtype)
    r_blocksparse = multi_head_blocksparse(inputs, inputs, inputs)

    torch.testing.assert_close(r_sdp, r_blocksparse, atol=5e-5, rtol=6e-3)