Spaces:
Runtime error
Runtime error
File size: 7,013 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple
import pytest
import torch
import xformers.ops
from xformers.ops import fmha
from .utils import assert_allclose, disable_tf32, ref_attention_for_test
@disable_tf32
def ref_attention_splitk_bmhk(
q, k, v, attn_bias, scale=None, split_k=None, dtype=None
) -> torch.Tensor:
assert q.ndim == 4
def T(t):
return t.permute((0, 2, 1, 3)).reshape(
[t.shape[0] * t.shape[2], t.shape[1], t.shape[3]]
)
if isinstance(attn_bias, xformers.ops.AttentionBias):
attn_bias = attn_bias.materialize(
(q.shape[0], q.shape[2], q.shape[1], k.shape[1]),
device=q.device,
dtype=torch.float32,
).reshape([q.shape[0] * q.shape[2], q.shape[1], k.shape[1]])
out = ref_attention_splitk(
T(q), T(k), T(v), attn_bias, scale=scale, split_k=split_k, dtype=dtype
)
out = out.reshape([q.shape[0], q.shape[2], q.shape[1], v.shape[3]])
return out.permute((0, 2, 1, 3))
@disable_tf32
def ref_attention_splitk(
q, k, v, attn_bias, scale=None, split_k=2, dtype=None
) -> torch.Tensor:
if q.ndim == 5:
def attn_bias_group(group: int):
if getattr(attn_bias, "HOLDS_DENSE_TENSOR", True):
return attn_bias[:, group]
return attn_bias
return torch.stack(
[
ref_attention_splitk_bmhk(
q[:, :, g],
k[:, :, g],
v[:, :, g],
attn_bias=attn_bias_group(g),
split_k=split_k,
dtype=dtype,
)
for g in range(q.shape[2])
],
dim=2,
)
if q.ndim == 4:
return ref_attention_splitk_bmhk(
q, k, v, attn_bias=attn_bias, split_k=split_k, dtype=dtype
)
assert q.ndim == 3
if dtype is None:
dtype = torch.float32
q = q.to(dtype=dtype)
k = k.to(dtype=dtype)
v = v.to(dtype=dtype)
if scale is None:
scale = q.shape[-1] ** -0.5
assert not q.isnan().any()
q = q * scale
assert not q.isnan().any()
if attn_bias is not None:
if isinstance(attn_bias, xformers.ops.AttentionBias):
# Always create in B,H,Mq,Mk format
attn_bias_tensor = attn_bias.materialize(
(q.shape[0], 1, q.shape[1], k.shape[1]),
device=q.device,
dtype=torch.float32,
)
else:
attn_bias_tensor = attn_bias
if attn_bias_tensor.ndim == 4:
assert q.shape[0] == attn_bias_tensor.shape[0] * attn_bias_tensor.shape[1]
attn_bias_tensor = attn_bias_tensor.reshape(
[-1, *attn_bias_tensor.shape[2:]]
)
split_size = k.size(-2) // split_k
split_config = {"dim": -2, "split_size_or_sections": split_size}
k_split = torch.split(k, **split_config)
v_split = torch.split(v, **split_config)
attn_bias_split = torch.split(
attn_bias_tensor, dim=-1, split_size_or_sections=split_size
)
def compute_attention_split(q_whole, k_slice, v_slice, attn_bias_slice):
p_slice = q_whole @ k_slice.transpose(-2, -1)
p_slice += attn_bias_slice
row_max = torch.max(p_slice, dim=-1, keepdim=True).values
p_slice_scaled = p_slice - row_max
p_slice_scaled[p_slice_scaled.isnan()] = float("-inf")
s = torch.exp(p_slice_scaled)
row_sumexp = torch.sum(s, dim=-1, keepdim=True)
attn_slice = s @ v_slice
return {
"attn_slice": attn_slice,
"row_max": row_max,
"row_sumexp": row_sumexp,
}
splits = list(zip(k_split, v_split, attn_bias_split))
slices = list(map(lambda s: compute_attention_split(q, s[0], s[1], s[2]), splits))
out = torch.zeros_like(q)
# reduce out over split-k slices
global_max = torch.zeros_like(slices[0]["row_max"]).fill_(float("-inf"))
global_sumexp = torch.zeros_like(slices[0]["row_sumexp"])
for s in slices:
local_out = s["attn_slice"]
local_max = s["row_max"]
local_sumexp = s["row_sumexp"]
log_alpha = -torch.abs(local_max - global_max)
alpha = torch.exp(log_alpha)
alpha.nan_to_num_(1.0)
pick_new = local_max < global_max
new_coef = torch.where(pick_new, alpha, 1.0)
curr_coef = torch.where(pick_new, 1.0, alpha)
out = out * curr_coef + local_out * new_coef
global_sumexp = global_sumexp * curr_coef + local_sumexp * new_coef
global_max = torch.max(local_max, global_max)
out /= global_sumexp
return out
def _kv_heads_label(kv_heads: Optional[int]) -> str:
if kv_heads is None:
return ""
if kv_heads == 1:
return "mq"
return f"gqa{kv_heads}"
@pytest.mark.parametrize("dtype", ["f32"])
@pytest.mark.parametrize("kv_heads", [None, 1, 2], ids=_kv_heads_label)
@pytest.mark.parametrize("n_heads", [16])
@pytest.mark.parametrize("padding, bsz", [(32, 8), (4096, 1)])
@pytest.mark.parametrize("split_k", [1, 2, 4])
@pytest.mark.parametrize("device", ["cpu"])
def test_splitk_reference(
kv_heads: int,
n_heads: int,
padding: int,
bsz: int,
dtype: str,
device: str,
split_k: int,
):
dtype_ = {"f16": torch.float16, "bf16": torch.bfloat16, "f32": torch.float32}[dtype]
torch.manual_seed(1)
d = 256
num_queries = 1
if kv_heads is not None and kv_heads > 1:
k_shape: Tuple[int, ...] = (1, bsz * padding, kv_heads, n_heads, d)
q_shape: Tuple[int, ...] = (
1,
bsz * num_queries,
kv_heads,
n_heads,
d,
)
else:
k_shape = (1, bsz * padding, n_heads, d)
q_shape = (1, bsz * num_queries, n_heads, d)
k = torch.rand(k_shape, dtype=dtype_, device=device)
k_seqlen = torch.randint(1, padding + 1, (bsz,)).tolist()
v = torch.rand_like(k)
q = torch.rand(q_shape, dtype=dtype_, device=device)
causal_diagonal = torch.tensor( # TODO: make unnecessary
[i - 1 for i in k_seqlen], dtype=torch.int32, device=device
)
if kv_heads is not None:
k = k[..., :1, :].expand(k_shape)
v = v[..., :1, :].expand(k_shape)
attn_bias = fmha.attn_bias.BlockDiagonalCausalWithOffsetPaddedKeysMask.from_seqlens(
q_seqlen=[1] * bsz,
kv_seqlen=k_seqlen,
causal_diagonal=causal_diagonal,
kv_padding=padding,
)
ref_out = ref_attention_for_test(q, k, v, attn_bias)
splitk_out = ref_attention_splitk(q, k, v, attn_bias, None, split_k=split_k)
assert_allclose(
ref_out,
splitk_out,
atol=fmha.ck.FwOp.ERROR_ATOL[dtype_],
rtol=fmha.ck.FwOp.ERROR_RTOL[dtype_],
)
|