Spaces:
Runtime error
Runtime error
File size: 32,794 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import functools
import random
from typing import cast
import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
import xformers # noqa: F401
import xformers.ops as xops
import xformers.ops.sp24 as sp24
from .utils import assert_allclose
cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA")
compute_capability = (0, 0)
if torch.cuda.is_available():
compute_capability = torch.cuda.get_device_capability("cuda")
torch_compile_tests = pytest.mark.skipif(
torch.__version__ < "2.2.0.dev20231122", reason="requires PyTorch 2.2+"
)
requires_sp24 = pytest.mark.skipif(compute_capability < (8, 0), reason="requires sm80+")
requires_sp24_gemm = pytest.mark.skipif(
compute_capability != (8, 0), reason="requires sm80"
)
parametrize_dtype = pytest.mark.parametrize(
"dtype", [torch.float16, torch.bfloat16], ids=["f16", "bf16"]
)
parametrize_backend = pytest.mark.parametrize(
"backend",
[sp24.BACKEND_CUTLASS, sp24.BACKEND_CUSPARSELT]
if sp24._has_cusparseLt()
else [sp24.BACKEND_CUTLASS],
)
atol_rtol_kw = {
torch.float16: {
"rtol": 2e-3,
"atol": 1e-4,
},
torch.bfloat16: {
"rtol": 1e-1,
"atol": 1e-1,
},
}
@cuda_only
def test_sparse24_largest_mask_2d() -> None:
inp = torch.tensor(
[[4, 3, 2, 1], [0, 0, 0.5, 0.5], [1, 2, 3, 4], [10, 2, -1, 5]],
device="cuda",
dtype=torch.float16,
)
out = torch.ops.xformers.sparse24_largest_mask_2d(inp)
assert out.int().tolist() == [
[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 1],
[1, 0, 0, 1],
]
@requires_sp24_gemm
@parametrize_dtype
@parametrize_backend
def test_autocast(dtype, backend: str) -> None:
N = 128
inp = torch.randn([N, N], dtype=torch.float32, device="cuda")
W = torch.randn([N, N], dtype=torch.float32, device="cuda")
sInp = sp24.sparsify24(inp.to(dtype=dtype), backend=backend)
y = sInp @ W.to(dtype=dtype)
with torch.autocast("cuda", dtype=dtype):
sInp_ac = sp24.sparsify24(inp, backend=backend)
y_ac = sInp_ac @ W
assert_allclose(
sInp._sp24_to_dense(),
sInp_ac._sp24_to_dense(),
"sparse24",
**atol_rtol_kw[dtype],
)
assert_allclose(y, y_ac, "gemm", **atol_rtol_kw[dtype])
@requires_sp24_gemm
@parametrize_dtype
def test_sparse24_causal1122(dtype) -> None:
inp = torch.tensor(
[[4, 3, 2, 1], [-1, -3, 0.6, 0.5], [1, 2, 3, 4], [10, 2, -1, 5]],
device="cuda",
dtype=dtype,
)
inp = F.pad(inp, (0, 128 - 4, 0, 128 - 4), "constant", 1)
sInp = sp24.sparsify24(inp, algo="causal1122")
mask = sInp._sp24_to_dense() / inp
assert mask[:4, :4].int().tolist() == [
[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 0, 1, 1],
[1, 0, 0, 1],
]
@requires_sp24_gemm
@parametrize_dtype
@parametrize_backend
def test_sparse24_largest_abs_values_greedy(dtype, backend) -> None:
inp = torch.tensor(
[[4, 3, 2, 1], [-1, -3, 0.6, 0.5], [1, 2, 3, 4], [10, 2, -1, 5]],
device="cuda",
dtype=dtype,
)
inp = F.pad(inp, (0, 128 - 4, 0, 128 - 4), "constant", 1)
sInp = sp24.sparsify24(inp, algo="largest_abs_values_greedy", backend=backend)
mask = sInp._sp24_to_dense() / inp
assert mask[:4, :4].int().tolist() == [
[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 1],
[1, 0, 0, 1],
]
@cuda_only
@parametrize_dtype
def test_sparse24_largest_mask_2d_notaligned(dtype) -> None:
inp = torch.randn([5, 5], device="cuda", dtype=dtype)
with pytest.raises(RuntimeError):
torch.ops.xformers.sparse24_largest_mask_2d(inp)
@cuda_only
@parametrize_dtype
def test_sparse24_largest_mask_2d_big(dtype) -> None:
inp = torch.randn([2048, 2048], device="cuda", dtype=dtype)
torch.ops.xformers.sparse24_largest_mask_2d(inp)
def create_random_mask(shape) -> torch.Tensor:
r = random.Random(0)
mask = torch.zeros(shape, dtype=torch.bool)
for line in range(mask.shape[0]):
for col in range(0, mask.shape[1], 4):
sparsity = r.choice(
[
[False, False, True, True],
[False, True, False, True],
[True, False, False, True],
[False, True, True, False],
[True, False, True, False],
[True, True, False, False],
]
)
mask[line, col : col + 4] = torch.tensor(sparsity, dtype=torch.bool)
return mask
@cuda_only
def test_detach_requires_grad() -> None:
x = torch.randn([128, 64], device="cuda", dtype=torch.float16, requires_grad=True)
xs = sp24.sparsify24(x)
assert xs.requires_grad
# `detach` behavior
xs2 = xs.detach()
assert not xs2.requires_grad
assert not (xs2 * 2).requires_grad
xs2.requires_grad_(True)
assert xs2.requires_grad
ys = xs2 * 2
assert ys.requires_grad
ys.backward(ys)
@cuda_only
def test_detach2() -> None:
x = torch.randn([128, 64], device="cuda", dtype=torch.float16, requires_grad=False)
assert not sp24.sparsify24(x).requires_grad
x.requires_grad_(True)
xs = sp24.sparsify24(x)
assert xs.requires_grad
xs2 = xs.detach()
xs2.requires_grad_(True)
xs3 = xs2 * 2
assert xs3.requires_grad
xs3.backward(xs3)
assert xs2.grad is not None
assert x.grad is None
@cuda_only
def test_meta_pack_and_reorder() -> None:
mask = create_random_mask([32, 64])
# Test a specific line with a known pattern
line = 3
mask[line, :16] = torch.tensor(
[
False,
True,
True,
False, # 1 << 0 | 2 << 2
True,
True,
False,
False, # 0 << 4 | 1 << 6
True,
False,
False,
True, # 0 << 8 | 3 << 10
False,
True,
True,
False, # 1 << 12 | 2 << 14
],
dtype=torch.bool,
)
packed = torch.ops.xformers._sparse24_pack_mask(mask)
assert packed.shape == (mask.shape[0], mask.shape[1] // 16)
# cast int16 -> uint16
value_packed = (packed[line, 0].item() + (1 << 16)) % (1 << 16)
expected_value = (
1 << 0 | 2 << 2 | 0 << 4 | 1 << 6 | 0 << 8 | 3 << 10 | 1 << 12 | 2 << 14
)
assert value_packed == expected_value
meta_reordered = torch.ops.xformers._sparse24_reorder_meta(packed)
assert meta_reordered.ndim == 3
assert meta_reordered.shape[0] == packed.shape[0]
assert (meta_reordered[0, 0, 0] == packed[0, 0]).item()
assert (meta_reordered[0, 1, 0] == packed[8, 0]).item()
assert (meta_reordered[1, 0, 0] == packed[0, 1]).item()
assert (meta_reordered[1, 1, 0] == packed[8, 1]).item()
assert (meta_reordered[2, 0, 0] == packed[16, 0]).item()
assert (meta_reordered[2, 1, 0] == packed[24, 0]).item()
# second column
assert (meta_reordered[0, 0, 1] == packed[0, 2]).item()
@cuda_only
def test_pack_tensor_according_to_mask() -> None:
mask = create_random_mask([32, 64])
# Test a specific line with a known pattern
line = 3
line_pattern = [
False,
True,
True,
False,
True,
True,
False,
False,
True,
False,
False,
True,
False,
True,
True,
False,
]
mask[line, :16] = torch.tensor(line_pattern, dtype=torch.bool)
packed = torch.ops.xformers._sparse24_pack_mask(mask)
reordered = torch.ops.xformers._sparse24_reorder_meta(packed)
a_full = torch.randn(mask.shape, dtype=torch.float16)
a_packed = torch.ops.xformers._sparse24_pack_tensor_according_to_mask(
a_full, reordered
)
line_full = a_full[line, :16].tolist()
line_packed = a_packed[line, :8].tolist()
line_packed_expected = [
value for index, value in enumerate(line_full) if line_pattern[index]
]
assert line_packed == line_packed_expected
@requires_sp24_gemm
@parametrize_dtype
def test_sp24_gemm(dtype) -> None:
M, N, K = 32, 32, 64
a = torch.randn([M, K], device="cuda", dtype=dtype)
b = torch.randn([K, N], device="cuda", dtype=dtype)
mask = create_random_mask([M, K])
mask_packed = torch.ops.xformers._sparse24_pack_mask(mask)
mask_reordered = torch.ops.xformers._sparse24_reorder_meta(mask_packed)
packed_a = torch.ops.xformers._sparse24_pack_tensor_according_to_mask(
a.cpu(), mask_reordered
)
packed_a = packed_a.cuda()
mask_reordered = mask_reordered.cuda()
mask = mask.to(dtype).cuda()
masked_a = a * mask
ref_out = masked_a @ b
sp24_out = torch.ops.xformers._sparse24_gemm(packed_a, b, mask_reordered)
assert_allclose(ref_out, sp24_out, msg="sp24 GEMM", **atol_rtol_kw[dtype])
@cuda_only
@pytest.mark.parametrize("transpose", [True, False])
def test_pack_meta_shuffle(transpose: bool) -> None:
local_meta = torch.zeros([4, 8, 8], dtype=torch.int64, device="cuda")
local_meta[:2, :2] = torch.randint(
0, 256, size=(2, 2, 8), dtype=torch.int64, device="cuda"
)
final_meta_tensor = torch.ops.xformers._sparse24_meta_shuffle_test(
local_meta, transpose
)
assert final_meta_tensor[2:, 2:].abs().max().item() == 0
final_meta = final_meta_tensor.tolist()
def pack(line):
if transpose:
return int(
local_meta[0, 0, line]
| (local_meta[1, 0, line] << 8)
| (local_meta[0, 1, line] << 16)
| (local_meta[1, 1, line] << 24)
)
else:
return int(
local_meta[0, 0, line]
| (local_meta[0, 1, line] << 8)
| (local_meta[1, 0, line] << 16)
| (local_meta[1, 1, line] << 24)
)
def meta_str(m):
return " ".join(f"0x{mm:02x}" for mm in m.tolist())
def expect_match(i, j, line):
value = final_meta[i][j][0]
expected = pack(line)
assert (
value == expected
), f"""value: 0x{value:02x} (expected: 0x{expected:02x})
{meta_str(local_meta[0, 0, :4])} (T0) |||| {meta_str(local_meta[0, 1, :4])} (T4)
{meta_str(local_meta[1, 0, :4])} (T1) |||| {meta_str(local_meta[1, 1, :4])} (T5)
"""
expect_match(0, 0, 0) # T0
if transpose:
expect_match(1, 0, 1) # T1
expect_match(0, 1, 2) # T4
else:
expect_match(0, 1, 1) # T4
expect_match(1, 0, 2) # T1
expect_match(1, 1, 3) # T5
@requires_sp24_gemm
@parametrize_dtype
@parametrize_backend
def test_pack_both_ways_meta_correctness(dtype, backend) -> None:
M, N = 128, 256
# Construct x to make sure we always have exactly 8 elements per 4x4 tile
a = (4 * torch.arange(8))[:, None] + torch.arange(8)[None, :]
a = a.repeat(M // 8, N // 8)
assert a.shape == (M, N)
a = a.cuda().to(dtype)
b = torch.randn([a.shape[1], 128], device="cuda", dtype=dtype)
a_sparse = sp24.sparsify24(a, backend=backend)
mask_dense = torch.ops.xformers.sparse24_largest_mask_2d(a)
if backend == sp24.BACKEND_CUTLASS:
assert isinstance(a_sparse, sp24.Sparse24TensorCutlass)
mask_packed = torch.ops.xformers._sparse24_pack_mask(mask_dense.cpu().bool())
mask_reordered = torch.ops.xformers._sparse24_reorder_meta(mask_packed).cuda()
assert torch.allclose(a_sparse.meta.view(torch.short), mask_reordered)
ref_gemm = (mask_dense * a) @ b
pack_gemm = a_sparse @ b
assert_allclose(ref_gemm, pack_gemm, msg="sp24 GEMM", **atol_rtol_kw[dtype])
@requires_sp24_gemm
@parametrize_dtype
def test_pack_both_ways_id(dtype) -> None:
N = 512
torch.manual_seed(0)
a = torch.randn([N, N], dtype=dtype, device="cuda")
b = torch.eye(N, dtype=dtype, device="cuda")
packed, meta, packed_t, meta_t = torch.ops.xformers.sparse24_sparsify_both_ways(a)[
:4
]
# Heuristic to ensure we pack the same values
assert torch.allclose(
packed.to(torch.float64).sum(), packed_t.to(torch.float64).sum()
)
mask_dense = torch.ops.xformers.sparse24_largest_mask_2d(a.to(dtype))
ref_gemm = mask_dense * a
# Test A@B
pack_gemm = torch.ops.xformers._sparse24_gemm(packed, b, meta)
max_diff = (ref_gemm - pack_gemm).abs().argmax()
assert torch.allclose(
ref_gemm, pack_gemm
), f"packed is wrong at pos: ({max_diff // N}, {max_diff % N})"
# Test A.t@B
pack_gemm = torch.ops.xformers._sparse24_gemm(packed_t, b, meta_t)
pack_gemm = pack_gemm.transpose(0, 1)
max_diff = (ref_gemm - pack_gemm).abs().argmax()
assert torch.allclose(
ref_gemm, pack_gemm
), f"packed_t is wrong at pos: ({max_diff // N}, {max_diff % N})"
@cuda_only
@parametrize_dtype
def test_pack_both_ways_edge_case1(dtype) -> None:
# In this case, the heuristic will keep 7 values out of 16
# instead of 8. let's see how the kernel handles this
quad = torch.tensor(
[
[2, -1, -2, -3], # Should be packed as `2 <null>`
[-1, 8, -1, 6],
[-1, -1, 4, 5],
[-1, 3, 7, -1],
],
dtype=dtype,
device="cuda",
)
a = torch.randn([32, 64], dtype=dtype, device="cuda")
a[:4, :4] = quad
packed, meta, packed_t, meta_t = torch.ops.xformers.sparse24_sparsify_both_ways(a)[
:4
]
# Check first line in A
assert packed[0, 0].item() == 2
assert packed[0, 1].item() == 0
# And first column in A.t
assert packed_t[0, 0].item() == 2
assert packed_t[0, 1].item() == 0
@cuda_only
@parametrize_dtype
def test_sp24_apply(dtype) -> None:
M, N = 256, 1024
x = torch.randn([M, N], dtype=dtype, device="cuda")
(
packed,
meta,
packed_t,
meta_t,
threads_masks,
) = torch.ops.xformers.sparse24_sparsify_both_ways(x)
packed2, _, packed_t2, _ = torch.ops.xformers.sparse24_apply(x, threads_masks)
assert torch.allclose(packed, packed2)
assert torch.allclose(packed_t, packed_t2)
@cuda_only
@parametrize_dtype
def test_sp24_api_different_pattern(dtype) -> None:
M, N = 256, 256
x = torch.randn([M, N], dtype=dtype, device="cuda")
y = torch.randn([M, N], dtype=dtype, device="cuda")
sx = sp24.sparsify24(x)
sy = sp24.sparsify24(y)
# Can't add with different sparsity pattern
with pytest.raises(ValueError):
sx + sy
# Ok, same sparsity pattern
assert isinstance(sx + sx, sp24.Sparse24Tensor)
# Ok, sharing sparsity pattern of x
sy2 = sp24.sparsify24_like(y, sx)
assert isinstance(sx + sy2, sp24.Sparse24Tensor)
@cuda_only
@parametrize_dtype
def test_sp24_api_different_pattern_transposed(dtype) -> None:
N = 256
x = torch.randn([N, N], dtype=dtype, device="cuda")
sx = sp24.sparsify24(x, backend=sp24.BACKEND_CUTLASS)
sxt = sx.t()
assert isinstance(sxt, sp24.Sparse24Tensor)
# Can't add with different sparsity pattern
with pytest.raises(ValueError):
sx + sxt
# But this should work
sx + sxt.t()
# And we should be able to sparsify with transposed pattern
sxt2 = sp24.sparsify24_like(x.t(), sxt)
assert torch.allclose(sxt2.packed, sxt.packed)
assert torch.allclose(sxt2.packed_t, sxt.packed_t)
@requires_sp24_gemm
@parametrize_dtype
@parametrize_backend
def test_sp24_transpose_invariant(dtype, backend) -> None:
M, N = 128, 256
torch.manual_seed(0)
r = random.Random(0)
def gen4x4():
# Create a 4x4 tile that can be 24 sparsified perfectly
values = [
[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 1],
[1, 0, 0, 1],
]
c1, c2 = r.sample([0, 1, 2, 3], 2)
r1, r2 = r.sample([0, 1, 2, 3], 2)
values[r1], values[r2] = values[r2], values[r1]
for i in range(4):
values[i][c1], values[i][c2] = values[i][c2], values[i][c1]
return values
a = torch.zeros([M, N], device="cuda", dtype=torch.float16)
assert M % 4 == 0 and N % 4 == 0
for m in range(0, M, 4):
for n in range(0, N, 4):
a[m : m + 4, n : n + 4] = torch.tensor(
gen4x4(), device="cuda", dtype=torch.float16
)
a = a * torch.randn_like(a).abs()
# Sparsify `a`` and `a.t()`
a_s = sp24.sparsify24(a, backend=backend)
a_t_s = sp24.sparsify24(a.t().contiguous(), backend=backend)
assert_allclose(a_s._sp24_to_dense(), a)
assert_allclose(a_t_s.t()._sp24_to_dense(), a) # type: ignore
assert_allclose(a_t_s._sp24_to_dense().t(), a)
@requires_sp24_gemm
@parametrize_dtype
def test_sp24_matmuls(dtype) -> None:
M, N, K = 64, 256, 1024
a = torch.randn([M, K], device="cuda", dtype=dtype)
b = torch.randn([K, N], device="cuda", dtype=dtype)
a_m = torch.ops.xformers.sparse24_largest_mask_2d(a)
b_m = torch.ops.xformers.sparse24_largest_mask_2d(b)
a_s = sp24.sparsify24(a)
b_s = sp24.sparsify24(b)
assert_allclose(a_s @ b, (a * a_m) @ b, msg="sp@dense", **atol_rtol_kw[dtype])
assert_allclose(a @ b_s, a @ (b * b_m), msg="dense@sp", **atol_rtol_kw[dtype])
assert_allclose(
a @ a_s.t(), a @ (a * a_m).t(), msg="[email protected]", **atol_rtol_kw[dtype]
)
assert_allclose(
a_s.t() @ a, (a * a_m).t() @ a, msg="sp.t@dense", **atol_rtol_kw[dtype]
)
@requires_sp24
def test_sp24_matmuls_mat_vec() -> None:
a = torch.randn([64, 128], device="cuda", dtype=torch.float16)
b = torch.randn([128], device="cuda", dtype=torch.float16)
a_m = torch.ops.xformers.sparse24_largest_mask_2d(a)
a_s = sp24.sparsify24(a)
with pytest.raises(NotImplementedError):
assert_allclose(a_s @ b, (a * a_m) @ b, msg="sp@dense", **atol_rtol_kw[a.dtype])
@requires_sp24
def test_sp24_matmuls_bmm() -> None:
a = torch.randn([64, 128], device="cuda", dtype=torch.float16)
b = torch.randn([5, 6, 128], device="cuda", dtype=torch.float16)
a_m = torch.ops.xformers.sparse24_largest_mask_2d(a)
a_s = sp24.sparsify24(a)
with pytest.raises(NotImplementedError):
assert_allclose(a_s @ b, (a * a_m) @ b, msg="sp@dense", **atol_rtol_kw[a.dtype])
def sparsify24_dense(tensor: torch.Tensor):
m = torch.ops.xformers.sparse24_largest_mask_2d(tensor)
return m * tensor
@requires_sp24_gemm
@parametrize_dtype
@pytest.mark.parametrize("act", [F.gelu, F.relu])
def test_sp24_api_mlp_act24_correctness(dtype, act) -> None:
B, in_ft, hid_ft, out_ft = 256, 2048, 6144, 2048
torch.manual_seed(0)
x = torch.randn([B, in_ft], dtype=dtype, device="cuda", requires_grad=True)
w1 = (
torch.randn([in_ft, hid_ft], dtype=dtype, device="cuda", requires_grad=False)
* 0.01
)
w2 = (
torch.randn([hid_ft, out_ft], dtype=dtype, device="cuda", requires_grad=False)
* 0.01
)
grad = (
torch.randn([B, out_ft], dtype=dtype, device="cuda", requires_grad=False) * 0.1
)
w1.requires_grad_(True)
w2.requires_grad_(True)
params_with_grads = [x, w1, w2]
# Run baseline
x1 = x @ w1
x1 = sparsify24_dense(x1)
x1 = act(x1)
out = x1 @ w2
out.backward(grad)
grads_ref = [t.grad for t in params_with_grads]
for t in params_with_grads:
t.grad = None
# Run with sparsity
x1 = x @ w1
x1 = sp24.sparsify24(x1)
x1 = act(x1)
out = x1 @ w2
out.backward(grad)
for grad_name, grad_ref, grad_calc in zip(
["x", "w1", "w2"], grads_ref, [t.grad for t in params_with_grads]
):
assert grad_calc is not None, grad_name
assert grad_ref is not None, grad_name
assert_allclose(grad_calc, grad_ref, msg=grad_name, **atol_rtol_kw[dtype])
@requires_sp24_gemm
@parametrize_dtype
def test_sp24_api_swiglu_correctness(dtype) -> None:
B, in_ft, hid_ft, out_ft = 256, 2048, 6144 // 2, 2048
torch.manual_seed(0)
x = torch.randn([B, in_ft], dtype=dtype, device="cuda", requires_grad=True)
w1 = (
torch.randn([in_ft, hid_ft], dtype=dtype, device="cuda", requires_grad=False)
* 0.01
)
w2 = (
torch.randn([in_ft, hid_ft], dtype=dtype, device="cuda", requires_grad=False)
* 0.01
)
w3 = (
torch.randn([hid_ft, out_ft], dtype=dtype, device="cuda", requires_grad=False)
* 0.01
)
grad = (
torch.randn([B, out_ft], dtype=dtype, device="cuda", requires_grad=False) * 0.1
)
w1.requires_grad_(True)
w2.requires_grad_(True)
w3.requires_grad_(True)
params_with_grads = [x, w1, w2, w3]
# Run baseline
x1 = x @ w1
x2 = x @ w2
x1s = sparsify24_dense(F.silu(x1))
hid = x1s * x2
out = hid @ w3
out.backward(grad)
grads_ref = [t.grad for t in params_with_grads]
for t in params_with_grads:
t.grad = None
# Run with sparsity
x1 = x @ w1
x2 = x @ w2
x1s = sp24.sparsify24(F.silu(x1))
hid = x1s * x2
out = hid @ w3
out.backward(grad)
for grad_name, grad_ref, grad_calc in zip(
["x", "w1", "w2", "w3"], grads_ref, [t.grad for t in params_with_grads]
):
assert grad_calc is not None, grad_name
assert grad_ref is not None, grad_name
assert_allclose(grad_calc, grad_ref, msg=grad_name, **atol_rtol_kw[dtype])
@requires_sp24_gemm
@parametrize_dtype
@pytest.mark.parametrize("M", [1, 8, 26, 31, 32, 48, 63])
def test_not_aligned(dtype, M):
N, K = 64, 128
A = torch.randn([M, K], dtype=dtype, device="cuda")
B = torch.randn([K, N], dtype=dtype, device="cuda")
As = sp24.sparsify24(A)
A = As._sp24_to_dense()
assert tuple(A.shape) == (M, K), A.shape
assert_allclose(As @ B, A @ B, msg="not aligned", **atol_rtol_kw[dtype])
@requires_sp24_gemm
@parametrize_dtype
@parametrize_backend
@pytest.mark.parametrize("input_rowmajor", [True, False])
def test_sparsify24_like_dense(dtype, input_rowmajor, backend):
M, N = 128, 256
if input_rowmajor:
x = torch.randn([M, N], dtype=dtype, device="cuda")
else:
x = torch.randn([N, M], dtype=dtype, device="cuda").t()
sx = sp24.sparsify24(x.contiguous(), backend=backend)
sx_like = sp24.sparsify24_like(x, pattern=sx, backend="dense")
assert_allclose(
sx_like, sx._sp24_to_dense(), msg="sp24_like", **atol_rtol_kw[dtype]
)
@requires_sp24_gemm
@parametrize_dtype
@parametrize_backend
def test_sparsify24_weights(dtype, backend):
x = torch.randn([128, 512], dtype=dtype, device="cuda", requires_grad=True)
w = torch.randn([1024, 512], dtype=dtype, device="cuda", requires_grad=True)
flat_w = w.flatten() # FSDP-like processing
w = flat_w.reshape(w.shape)
sw = sp24.sparsify24(w, gradient="24dense", backend=backend)
y = x @ sw.t()
y.backward(y)
class LinearW24(torch.nn.Linear):
def forward(self, input: torch.Tensor) -> torch.Tensor:
input_shape = input.shape
input = input.flatten(end_dim=-2)
dim0 = input.shape[0]
if dim0 % 8 != 0:
# NOTE: This should be torch-compiled away
input = F.pad(input, [0, 0, 0, -dim0 % 8])
w_sparse = xops.sparsify24(
self.weight,
gradient="24dense",
backend="cusparselt",
)
return F.linear(input, w_sparse, self.bias,)[
:dim0
].unflatten(dim=0, sizes=input_shape[:-1])
# XXX: This is needed to avoid a CUDA internal error
# See the issue here:
# https://github.com/pytorch/pytorch/issues/113776
@functools.lru_cache()
def _workaround_cusparselt_internal_error() -> None:
x0 = torch.randn([128, 128], device="cuda", dtype=torch.float16, requires_grad=True)
m = LinearW24(128, 128, bias=False).cuda().to(torch.float16)
out = m(x0)
out.backward(out)
@requires_sp24
@parametrize_dtype
@pytest.mark.skipif(not sp24._has_cusparseLt(), reason="requires cusparselt")
@pytest.mark.parametrize("bias", [False, True], ids=["", "bias"])
@pytest.mark.parametrize("aligned", [False, True], ids=["misaligned", ""])
@pytest.mark.parametrize("amp", [False, True], ids=["", "amp"])
def test_linearw24(dtype, bias: bool, aligned: bool, amp: bool) -> None:
_workaround_cusparselt_internal_error()
B, ft_in, ft_out = 64, 128, 256
if not aligned:
B = 65
model_dtype = torch.float32 if amp else dtype
x = torch.randn([B, ft_in], device="cuda", dtype=model_dtype, requires_grad=True)
grad = torch.randn([B, ft_out], device="cuda", dtype=model_dtype)
m = torch.nn.Linear(ft_in, ft_out, bias=bias).cuda().to(model_dtype)
m24 = LinearW24(ft_in, ft_out, bias=bias).cuda().to(model_dtype)
with torch.autocast("cuda", dtype=dtype, enabled=amp):
# Make weights sparse
state_dict = m.state_dict()
weight_sp24 = sp24.sparsify24(state_dict["weight"].abs())
state_dict["weight"] = weight_sp24._sp24_to_dense().to(model_dtype).detach()
m.load_state_dict(state_dict)
m24.load_state_dict(state_dict)
# FW with dense weights
out = m(x)
# FW with sparsity
x24 = x.detach().requires_grad_()
out24 = m24(x24)
# Backward passes outside autocast
out.backward(grad)
out24.backward(grad)
assert out24.is_contiguous()
assert x24.grad is not None
assert x24.grad.is_contiguous()
assert m24.weight.grad is not None
assert m24.weight.grad.is_contiguous()
if bias:
assert m24.bias.grad is not None
assert_allclose(out24, out, msg="output", **atol_rtol_kw[dtype])
assert x.grad is not None and x24.grad is not None
assert_allclose(x24.grad, x.grad, msg="x.grad", **atol_rtol_kw[dtype])
assert m.weight.grad is not None
assert_allclose(
m24.weight.grad.to(dtype),
sp24.sparsify24_like(
m.weight.grad.to(dtype), pattern=weight_sp24, out_dense=True
),
msg="w.grad",
**atol_rtol_kw[dtype],
)
if bias:
assert m.bias.grad is not None
assert m24.bias.grad is not None
assert_allclose(
m24.bias.grad.to(dtype),
m.bias.grad.to(dtype),
msg="bias.grad",
**atol_rtol_kw[dtype],
)
@requires_sp24
@pytest.mark.skipif(not sp24._has_cusparseLt(), reason="requires cusparselt")
def test_wrong_alignment_error_message() -> None:
A = torch.randn([128, 128], device="cuda", dtype=torch.float16)
B = torch.randn([128, 4], device="cuda", dtype=torch.float16)
A = sp24.sparsify24(A, backend="cusparselt")
with pytest.raises(NotImplementedError, match="aligned to 8"):
A @ B
@requires_sp24
@pytest.mark.skipif(not sp24._has_cusparseLt(), reason="requires cusparselt")
def test_min_alignment() -> None:
A = torch.randn([128, 128], device="cuda", dtype=torch.float16)
B = torch.randn([128, 8], device="cuda", dtype=torch.float16)
A = sp24.sparsify24(A, backend="cusparselt")
assert_allclose(A @ B, A._sp24_to_dense() @ B, "output", **atol_rtol_kw[A.dtype])
@requires_sp24
@pytest.mark.skipif(not sp24._has_cusparseLt(), reason="requires cusparselt")
def test_wrong_dtype_error_message() -> None:
A = torch.randn([128, 128], device="cuda", dtype=torch.float16)
B = torch.randn([128, 16], device="cuda", dtype=torch.float32)
A = sp24.sparsify24(A, backend="cusparselt")
with pytest.raises(NotImplementedError, match="the same data type"):
A @ B
@requires_sp24_gemm
@parametrize_backend
@pytest.mark.parametrize("with_bias", [False, True])
def test_linear_dispatch_inference_mode(backend: str, with_bias: bool) -> None:
B, ft_in, ft_out = 128, 256, 512
x = torch.randn([B, ft_in], device="cuda", dtype=torch.float16)
weight = torch.randn([ft_out, ft_in], device="cuda", dtype=torch.float16)
bias = (
torch.randn([ft_out], device="cuda", dtype=torch.float16) if with_bias else None
)
w_sparse = sp24.sparsify24(
weight,
gradient="24dense",
backend=backend,
)
# NOTE: When in `inference_mode`, PyTorch no longer dispatches to `addmm`, but to `linear`
# so we need to support that as well
with torch.inference_mode():
# Does not support bias at the moment in CUTLASS backend
if bias is not None and backend == sp24.BACKEND_CUTLASS:
with pytest.raises(NotImplementedError):
F.linear(x, w_sparse, bias)
return
out = F.linear(x, w_sparse, bias)
out_ref = F.linear(x, w_sparse._sp24_to_dense(), bias)
assert_allclose(out, out_ref, msg="output", **atol_rtol_kw[x.dtype])
@torch_compile_tests
@cuda_only
def test_sp24_meta() -> None:
x = torch.randn([1024, 512], device="meta", dtype=torch.float16)
x_s = sp24.sparsify24(x, backend="cusparselt")
assert x_s.shape == x.shape
x_s_t = x_s.t()
assert x_s_t.shape == x.t().shape
@torch_compile_tests
@requires_sp24_gemm
@parametrize_backend
def test_sp24_compile(backend) -> None:
x = torch.randn([1024, 512], device="cuda", dtype=torch.float16, requires_grad=True)
e = torch.eye(x.shape[0], x.shape[0], device="cuda", dtype=torch.float16)
def fn(x, e):
y = sp24.sparsify24(x, backend=backend, gradient="24dense")
y = y.t()
return x @ y
# Eager
output = fn(x, e)
output.backward(output)
# Torch compile
output = torch.compile(fn)(x, e)
output.backward(output)
class _TransformerFFN(nn.Module):
def __init__(
self,
in_features: int,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
bias: bool = True,
linear_cls=nn.Linear,
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = linear_cls(in_features, hidden_features, bias=bias)
self.act = act_layer()
self.fc2 = linear_cls(hidden_features, out_features, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
@requires_sp24_gemm
@torch_compile_tests
@pytest.mark.skipif(not sp24._has_cusparseLt(), reason="requires cusparselt")
def test_linearw24_block_compile() -> None:
# TODO: Parametrize on `dtype` when torch.compile gets faster
# currently takes ~5s per test
dtype = torch.bfloat16
B, FT_IN, FT_HIDDEN = 31, 512, 2048
_workaround_cusparselt_internal_error()
m = _TransformerFFN(FT_IN, FT_HIDDEN, linear_cls=LinearW24).to("cuda").to(dtype)
m_c = _TransformerFFN(FT_IN, FT_HIDDEN, linear_cls=LinearW24).to("cuda").to(dtype)
m_c.load_state_dict(m.state_dict())
m_c = cast(_TransformerFFN, torch.compile(m_c))
x, grad = [torch.randn([B, FT_IN], dtype=dtype, device="cuda") for _ in range(2)]
x = x.requires_grad_()
out = m(x)
out.backward(grad)
x_c = x.detach().requires_grad_()
out_c = m_c(x_c)
out_c.backward(grad)
assert_allclose(out_c, out, "output", **atol_rtol_kw[dtype])
assert x_c.grad is not None and x.grad is not None
assert_allclose(x_c.grad, x.grad, "output", **atol_rtol_kw[dtype])
for param_name, param_ref, param_c in [
["fc1.weight", m.fc1.weight, m_c.fc1.weight],
["fc1.bias", m.fc1.bias, m_c.fc1.bias],
["fc2.weight", m.fc2.weight, m_c.fc2.weight],
["fc2.bias", m.fc2.bias, m_c.fc2.bias],
]:
assert param_ref.grad is not None and param_c.grad is not None, param_name
assert_allclose(param_c.grad, param_ref.grad, param_name, **atol_rtol_kw[dtype])
@requires_sp24
@pytest.mark.skipif(not sp24._has_cusparseLt(), reason="requires cusparselt")
def test_sp24_ste():
x = torch.randn([512, 512], dtype=torch.float16, device="cuda", requires_grad=True)
grad = torch.randn_like(x)
spX = sp24.sparsify24(x, gradient=sp24.GRADIENT_STE)
spX.backward(grad)
assert_allclose(x.grad, grad, "grad")
@requires_sp24_gemm
@parametrize_dtype
def test_sparsify24_ste(dtype):
x = torch.randn([512, 512], dtype=dtype, device="cuda", requires_grad=True)
y = torch.randn([512, 512], dtype=dtype, device="cuda", requires_grad=True)
mul0 = 2.0 # (numbers that have an exact representation in f16)
mul1 = 0.5
spX = sp24.sparsify24_ste(x, bw_mul0=mul0, bw_mul1=mul1)
spX.backward(y)
spYd = sp24.sparsify24_like(y, pattern=spX)._sp24_to_dense()
ref = mul1 * (spYd) + mul0 * (y - spYd)
assert_allclose(x.grad, ref, "grad")
|