File size: 9,180 Bytes
e202b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

import pytest
import torch

# needed to register custom ops
import xformers  # noqa: F401
from xformers.ops import masked_matmul
from xformers.sparse import BlockSparseTensor, SparseCSRTensor

from .utils import disable_tf32

cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA")
_devices = (
    ["cpu", "cuda:0"] if torch.cuda.is_available() and torch.version.cuda else ["cpu"]
)
_tensor_types = [BlockSparseTensor, SparseCSRTensor]


def _create_blocksparse_tensor(
    device, block_size=32, Z=8, C=2, H=64, W=64, dtype=torch.float32
):
    layout = torch.randint(2, (C, H // block_size, W // block_size), device=device)
    layout[:, :, 0] = 1
    layout[:, 0, :] = 1
    values = torch.randn(Z, layout.sum(), block_size, block_size, device=device).to(
        dtype
    )

    return BlockSparseTensor(values, layout)


def _create_csr_tensor(device, dtype, shape, sparsity, divisible_by=4):
    matrix = torch.rand(shape, dtype=torch.float32, device=device).to(dtype)
    assert matrix.ndim == 3
    keep = torch.rand_like(matrix[0], dtype=torch.float32) > sparsity
    nonzero = torch.nonzero(keep)
    nnz = nonzero.shape[0]
    # NOTE: need to make it a multiple of 4 for sputnik
    nonzero = nonzero[: (nnz - nnz % divisible_by)]
    i, j = nonzero.unbind(1)
    output = torch.zeros_like(matrix)
    bdim = torch.arange(matrix.shape[0], device=matrix.device)[:, None]
    output[bdim, i, j] = matrix[bdim, i, j]
    return SparseCSRTensor.from_dense(output)


def _create_tensor(tensor_type, device, dtype, shape, sparsity):
    if tensor_type == BlockSparseTensor:
        block_size = 16
        return _create_blocksparse_tensor(
            device=device, dtype=dtype, block_size=block_size
        )
    elif tensor_type == SparseCSRTensor:
        return _create_csr_tensor(
            device=device, dtype=dtype, shape=shape, sparsity=sparsity
        )


def _seed():
    torch.random.manual_seed(42)
    torch.cuda.manual_seed_all(42)


def _get_dtype_atol(tensor_type, device: str):
    _seed()

    if tensor_type == BlockSparseTensor and "cuda" in device:
        # Upstream GPU blocksparse (Triton op) uses TF32 by default for all internal computations
        # TF32 has the precision of fp16 but the range of fp32
        # See https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True  # type: ignore
        return torch.float32, 1e-1

    # Force pytorch to keep its computations as float32 (will default to tf32 with recent cuda and ampere+ GPU)
    torch.backends.cuda.matmul.allow_tf32 = False
    torch.backends.cudnn.allow_tf32 = False  # type: ignore

    return torch.float32, 1e-5


@pytest.mark.parametrize("device", _devices)
@pytest.mark.parametrize("func", [torch.add, torch.mul])
def test_sparse_binary_ops(func, device):
    # TODO: add for BlockSparseTensor as well
    N, H, W = 8, 64, 64
    sparsity = 0.5
    shape = (N, H, W)

    a_sparse = _create_tensor(
        SparseCSRTensor, device, dtype=torch.float32, shape=shape, sparsity=sparsity
    )
    a = a_sparse.to_dense()

    b = a
    b_sparse = a_sparse

    res = func(a_sparse, b_sparse).to_dense()
    res_gt = func(a, b)

    assert torch.allclose(res, res_gt)


@disable_tf32
@pytest.mark.parametrize("tensor_type", _tensor_types)
@pytest.mark.parametrize("device", _devices)
def test_masked_matmul(tensor_type, device):
    N, C, H, W, L = 8, 2, 64, 64, 32
    sparsity = 0.7
    dtype, atol = _get_dtype_atol(tensor_type, device)

    shape0 = (N, C, H, W)
    shape1 = (N, C, H, L)
    shape2 = (N, C, W, L)

    if tensor_type != BlockSparseTensor:
        shape0 = shape0[1:]
        shape1 = shape1[1:]
        shape2 = shape2[1:]

    mask_sparse = _create_tensor(
        tensor_type, device, dtype=torch.bool, shape=shape0, sparsity=sparsity
    )
    mask = mask_sparse.to_dense()

    a = torch.randn(shape1, device=device, dtype=dtype)
    b = torch.randn(shape2, device=device, dtype=dtype)

    aa = a.clone()
    bb = b.clone()

    a.requires_grad_(True)
    b.requires_grad_(True)
    aa.requires_grad_(True)
    bb.requires_grad_(True)

    bt = b.transpose(-2, -1)
    bbt = bb.transpose(-2, -1)

    res_gt = masked_matmul(a, bt, mask)
    res = masked_matmul(aa, bbt, mask_sparse)

    res_dense = res.to_dense()
    res_dense = torch.where(mask, res_dense, torch.full_like(res_dense, float("-inf")))

    assert res.dtype == res_gt.dtype
    assert torch.allclose(res_dense, res_gt, atol=atol)

    # try to workaround non-contiguous issues with triton for now
    res_gt.backward(torch.ones_like(res_gt))
    res.values().backward(torch.ones_like(res.values()))

    assert torch.allclose(a.grad, aa.grad, atol=atol)
    assert torch.allclose(b.grad, bb.grad, atol=atol)


@disable_tf32
@pytest.mark.parametrize("tensor_type", _tensor_types)
@pytest.mark.parametrize("device", _devices)
def test_bmm(tensor_type, device):
    N, C, H, W, L = 8, 2, 64, 64, 32
    dtype, atol = _get_dtype_atol(tensor_type, device)

    sparsity = 0.8
    shape0 = (N, C, H, W)
    shape1 = (N, C, W, L)

    if tensor_type != BlockSparseTensor:
        shape0 = shape0[1:]
        shape1 = shape1[1:]

    a_sparse = _create_tensor(
        tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity
    )
    a = a_sparse.to_dense()
    mask = a != 0

    a_sparse.requires_grad_(True)
    a.requires_grad_(True)

    b = torch.randn(shape1, device=device, dtype=dtype)
    b2 = b.clone()

    b.requires_grad_(True)
    b2.requires_grad_(True)

    res_gt = a @ b
    res = a_sparse @ b2

    assert res.dtype == res_gt.dtype
    assert torch.allclose(
        res, res_gt, atol=atol
    ), f"{torch.max(torch.abs(res-res_gt))} - tolerance: {atol}"

    res_gt.sum().backward()
    res.sum().backward()

    a_grad = a.grad.clone().detach()
    a_grad[~mask] = 0

    assert torch.allclose(b.grad, b2.grad, atol=atol)
    assert torch.allclose(
        a_grad, a_sparse.grad.to_dense(), atol=atol
    ), f"{torch.max(torch.abs(a_grad-a_sparse.grad.to_dense()))}"


@disable_tf32
@pytest.mark.parametrize("tensor_type", _tensor_types)
@pytest.mark.parametrize("device", _devices)
def test_sparse_softmax(tensor_type, device):
    N, C, H, W = 8, 2, 64, 64
    dtype, atol = _get_dtype_atol(tensor_type, device)

    sparsity = 0.8

    shape0 = (N, C, H, W)
    if tensor_type != BlockSparseTensor:
        shape0 = shape0[1:]

    a_sparse = _create_tensor(
        tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity
    )
    a = a_sparse.to_dense()
    mask = a != 0

    a[~mask] = float("-inf")

    a_sparse.requires_grad_(True)
    a.requires_grad_(True)

    res_gt = torch.softmax(a, dim=-1)
    res_sparse = torch.softmax(a_sparse, dim=-1)

    res = res_sparse.to_dense()

    assert res.dtype == res_gt.dtype
    assert torch.allclose(
        res, res_gt, atol=atol
    ), f"{torch.max(torch.abs(res- res_gt))}"

    # WARNING: gradients are modified in-place!
    res_sparse.values().backward(torch.ones_like(res_sparse.values()))
    res_gt.backward(torch.ones_like(res_gt))

    a_grad = a.grad.clone()
    a_grad[~mask] = 0

    assert torch.allclose(
        a_grad, a_sparse.grad.to_dense(), atol=atol
    ), f"{torch.max(torch.abs(a_grad- a_sparse.grad.to_dense()))}"


@pytest.mark.parametrize("tensor_type", _tensor_types)
@pytest.mark.parametrize("device", _devices)
def test_deepcopy(tensor_type, device):
    import copy

    N, C, H, W = 8, 2, 64, 64
    dtype = torch.float32
    sparsity = 0.8

    shape0 = (N, C, H, W)
    if tensor_type != BlockSparseTensor:
        shape0 = shape0[1:]

    a_sparse = _create_tensor(
        tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity
    )

    b_sparse = copy.deepcopy(a_sparse)
    assert torch.equal(a_sparse, b_sparse)


@pytest.mark.parametrize("tensor_type", _tensor_types)
@pytest.mark.parametrize("device", _devices)
def test_module_buffer(tensor_type, device):
    N, C, H, W = 8, 2, 64, 64
    dtype = torch.float32
    sparsity = 0.8

    shape0 = (N, C, H, W)
    if tensor_type != BlockSparseTensor:
        shape0 = shape0[1:]

    a_sparse = _create_tensor(
        tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity
    )
    b_sparse = _create_tensor(
        tensor_type, device, dtype=dtype, shape=shape0, sparsity=sparsity
    )

    module = torch.nn.Module()
    # test that register_buffer works
    module.register_buffer("a_sparse", a_sparse)

    assert module.a_sparse is a_sparse

    module.to(device)
    assert module.a_sparse.device == torch.device(device)

    state_dict = module.state_dict()
    assert "a_sparse" in state_dict
    assert torch.equal(a_sparse.to(device), state_dict["a_sparse"])

    module.load_state_dict(state_dict)

    module.load_state_dict({"a_sparse": b_sparse})
    assert torch.equal(module.a_sparse, b_sparse.to(device))