Spaces:
Runtime error
Runtime error
File size: 8,741 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import os
import random
from typing import Tuple
import pytest
import torch
from xformers import _is_triton_available
from xformers.ops import (
sequence_parallel_leading_matmul,
sequence_parallel_trailing_matmul,
)
from .multiprocessing_utils import launch_subprocesses
compute_capability = (0, 0)
if torch.cuda.is_available():
compute_capability = torch.cuda.get_device_capability("cuda")
cuda_sm70_only = pytest.mark.skipif(
compute_capability < (7, 0), reason="requires sm70+"
)
at_least_2_gpus = pytest.mark.skipif(
torch.cuda.device_count() < 2, reason="needs at least 2 GPUs"
)
# We care about correctness, not performance, hence let's "disable" the
# expensive autotuning by removing all configs except one (the first one).
if _is_triton_available():
from xformers.ops._triton.sequence_parallel_fused_kernels import (
_xformers_seqpar_matmul_kernel,
)
while len(_xformers_seqpar_matmul_kernel.configs) > 1:
_xformers_seqpar_matmul_kernel.configs.pop()
from xformers.ops._triton.tiled_matmul_kernels import _xformers_tiled_matmul_kernel
while len(_xformers_tiled_matmul_kernel.configs) > 1:
_xformers_tiled_matmul_kernel.configs.pop()
def reference_leading(input_, w1, w2):
hidden1 = torch.matmul(input_, w1.t())
hidden2 = torch.matmul(input_, w2.t())
return [hidden1, hidden2]
def reference_trailing(hidden, w):
output = torch.matmul(hidden, w.t())
return output
def xformers_leading(input_, w1, w2, *, fuse, group):
return sequence_parallel_leading_matmul(
input_, [w1.t(), w2.t()], fuse=fuse, process_group=group
)
def xformers_trailing(hidden, w, *, fuse, group):
return sequence_parallel_trailing_matmul(
hidden, w.t(), fuse=fuse, process_group=group
)
def inner_seqpar(
kind: str,
step: str,
dims: Tuple[int, ...],
dtype: torch.dtype,
seed: int,
):
my_rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
subgroup = torch.distributed.new_group()
fused = True
if kind == "unfused":
fused = False
elif kind == "fallback":
os.environ["DISABLE_FUSED_SEQUENCE_PARALLEL"] = "1"
torch.random.manual_seed(seed)
batch_dims = dims[:-2]
outer_dim = dims[-2]
inner_dim = dims[-1]
# To check for correctness we want to compare the outputs but the accuracy
# of matmuls, apparently, is not that great. We thus try to produce inputs
# for which no rounding at all will occur. We do this by using zero or one
# inputs, so their product will also be zero or one, and keep the reduction
# dimension small enough so that they fit in the mantissa without overflow.
max_exact_value = 2 * (1 / torch.finfo(dtype).eps)
# 0.25 is the ratio of expected ones and we aim at 2/3 of the safe range
assert outer_dim * 0.25 <= max_exact_value * 0.66
assert inner_dim * world_size * 0.25 <= max_exact_value * 0.66
def my_chunk(t, *, dim):
return t.tensor_split(world_size, dim=dim)[my_rank]
if step == "leading":
input_ = torch.testing.make_tensor(
batch_dims + (outer_dim,),
dtype=dtype,
device="cuda",
low=0,
high=1,
).round()
weight1, weight2 = [
torch.testing.make_tensor(
(inner_dim * (idx + 1), outer_dim),
dtype=dtype,
device="cuda",
low=0,
high=1,
).round()
for idx in range(2)
]
gradient1, gradient2 = [
torch.testing.make_tensor(
batch_dims + (inner_dim * (idx + 1),),
dtype=dtype,
device="cuda",
low=0,
high=1,
).round()
for idx in range(2)
]
# Non-fused reference code
input_ref = input_.detach().requires_grad_()
weight1_ref = weight1.detach().requires_grad_()
weight2_ref = weight2.detach().requires_grad_()
output1_ref, output2_ref = reference_leading(
input_ref, weight1_ref, weight2_ref
)
torch.autograd.backward([output1_ref, output2_ref], [gradient1, gradient2])
my_output1_ref = my_chunk(output1_ref, dim=-1)
my_output2_ref = my_chunk(output2_ref, dim=-1)
my_weight1_grad_ref = my_chunk(weight1_ref.grad, dim=0)
my_weight2_grad_ref = my_chunk(weight2_ref.grad, dim=0)
my_input_grad_ref = my_chunk(input_ref.grad, dim=0)
# Faster fused mode
my_input_xf = my_chunk(input_, dim=0).detach().requires_grad_()
my_weight1_xf = my_chunk(weight1, dim=0).detach().requires_grad_()
my_weight2_xf = my_chunk(weight2, dim=0).detach().requires_grad_()
my_gradient1 = my_chunk(gradient1, dim=-1)
my_gradient2 = my_chunk(gradient2, dim=-1)
my_output1_xf, my_output2_xf = xformers_leading(
my_input_xf, my_weight1_xf, my_weight2_xf, fuse=fused, group=subgroup
)
torch.autograd.backward(
[my_output1_xf, my_output2_xf], [my_gradient1, my_gradient2]
)
my_weight1_grad_xf = my_weight1_xf.grad
my_weight2_grad_xf = my_weight2_xf.grad
my_input_grad_xf = my_input_xf.grad
# Checks
torch.testing.assert_close(my_output1_ref, my_output1_xf)
torch.testing.assert_close(my_output2_ref, my_output2_xf)
torch.testing.assert_close(my_input_grad_ref, my_input_grad_xf)
torch.testing.assert_close(my_weight1_grad_ref, my_weight1_grad_xf)
torch.testing.assert_close(my_weight2_grad_ref, my_weight2_grad_xf)
elif step == "trailing":
input_ = torch.testing.make_tensor(
batch_dims + (inner_dim,),
dtype=dtype,
device="cuda",
low=0,
high=1,
).round()
weight = torch.testing.make_tensor(
(outer_dim, inner_dim),
dtype=dtype,
device="cuda",
low=0,
high=1,
).round()
gradient = torch.testing.make_tensor(
batch_dims + (outer_dim,),
dtype=dtype,
device="cuda",
low=0,
high=1,
).round()
# Non-fused reference code
input_ref = input_.detach().requires_grad_()
weight_ref = weight.detach().requires_grad_()
output_ref = reference_trailing(input_ref, weight_ref)
torch.autograd.backward([output_ref], [gradient])
my_output_ref = my_chunk(output_ref, dim=0)
my_weight_grad_ref = my_chunk(weight_ref.grad, dim=1)
my_input_grad_ref = my_chunk(input_ref.grad, dim=-1)
# Faster fused mode
my_input_xf = my_chunk(input_, dim=-1).detach().clone().requires_grad_()
my_weight_xf = my_chunk(weight, dim=1).detach().requires_grad_()
my_gradient = my_chunk(gradient, dim=0)
my_output_xf = xformers_trailing(
my_input_xf, my_weight_xf, fuse=fused, group=subgroup
)
torch.autograd.backward([my_output_xf], [my_gradient])
my_weight_grad_xf = my_weight_xf.grad
my_input_grad_xf = my_input_xf.grad
# Checks
torch.testing.assert_close(my_output_ref, my_output_xf)
torch.testing.assert_close(my_input_grad_ref, my_input_grad_xf)
torch.testing.assert_close(my_weight_grad_ref, my_weight_grad_xf)
@cuda_sm70_only
@pytest.mark.parametrize(
"kind",
[
"singleton",
pytest.param("unfused", marks=at_least_2_gpus),
pytest.param("fallback", marks=at_least_2_gpus),
"fused",
],
)
@pytest.mark.parametrize(
"step",
[
"leading",
"trailing",
],
)
@pytest.mark.parametrize(
"dims",
[
pytest.param((2, 2, 512, 512, 256), id="nice-shapes"),
pytest.param((2, 1023, 511, 257), id="ugly-shapes"),
],
)
@pytest.mark.parametrize(
"dtype",
[
pytest.param(torch.bfloat16, id="bf16"),
pytest.param(torch.float16, id="fp16"),
pytest.param(torch.float32, id="fp32"),
],
)
def test_seqpar(
kind: str,
step: str,
dims: Tuple[int, ...],
dtype: torch.dtype,
):
world_size = 1 if kind == "singleton" else 2
seed = random.getrandbits(32)
launch_subprocesses(
world_size=world_size,
fn=inner_seqpar,
kind=kind,
step=step,
dims=dims,
dtype=dtype,
seed=seed,
)
|