File size: 15,826 Bytes
e202b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

import itertools

import pytest
import torch

import xformers.components.attention.attention_patterns as AP
from xformers.components.attention.sparsity_config import (
    BigBirdSparsityConfig,
    BSLongformerSparsityConfig,
    DenseSparsityConfig,
    FixedSparsityConfig,
    VariableSparsityConfig,
)


# baseline implementations
def _local_1d_pattern(attn_size: int, window_size: int) -> torch.Tensor:
    assert (
        window_size % 2 == 1
    ), "The window size is assumed to be odd (counts self-attention + 2 wings)"
    h_win_size = window_size // 2

    attn_shape = (attn_size, attn_size)
    full_attn = torch.ones(attn_shape, dtype=torch.bool)

    mask = torch.tril(full_attn, diagonal=h_win_size)
    mask &= ~torch.tril(full_attn, diagonal=-(h_win_size + 1))
    return mask


def _generate_2d_grid(H, W):
    i = torch.arange(H)
    j = torch.arange(W)
    i, j = torch.meshgrid(i, j)
    return i, j


def _horizontal_axial_2d_distance(H, W, p=2.0):
    i, _ = _generate_2d_grid(H, W)
    ij = i.reshape(-1, 1).float()
    d = torch.cdist(ij, ij, p=p)
    return d


def _vertical_axial_2d_distance(H, W, p=2.0):
    _, j = _generate_2d_grid(H, W)
    ij = j.reshape(-1, 1).float()
    d = torch.cdist(ij, ij, p=p)
    return d


def _local_2d_distance(H, W, p=2.0):
    # axial is a special case with p=0 and distance=2
    i, j = _generate_2d_grid(H, W)
    ij = torch.stack([i.flatten(), j.flatten()], 1).float()
    d = torch.cdist(ij, ij, p=p)
    return d


def _local_2d_gaussian_distribution(H, W, sigma=1.0):
    d = _local_2d_distance(H, W, p=2.0) ** 2
    d = torch.exp(-0.5 * sigma ** (-2.0) * d)
    return d


@pytest.mark.parametrize("window_size", [3, 7, 11])
@pytest.mark.parametrize("attn_size", [50, 51, 64])
def test_local_1d_pattern(attn_size, window_size):
    mask = AP.local_1d_pattern(attn_size, window_size).float()
    mask_ref = _local_1d_pattern(attn_size, window_size).float()
    assert torch.allclose(mask, mask_ref)


@pytest.mark.parametrize("p", [0, 1, 2])
@pytest.mark.parametrize("W", [5, 7, 10])
@pytest.mark.parametrize("H", [5, 7, 10])
def test_horizontal_axial_2d_distance(H, W, p):
    d = AP.horizontal_axial_2d_distance(H, W, p=p)
    d_ref = _horizontal_axial_2d_distance(H, W, p=p)
    assert torch.allclose(d, d_ref)


@pytest.mark.parametrize("p", [0, 1, 2])
@pytest.mark.parametrize("W", [5, 7, 10])
@pytest.mark.parametrize("H", [5, 7, 10])
def test_vertical_axial_2d_distance(H, W, p):
    d = AP.vertical_axial_2d_distance(H, W, p=p)
    d_ref = _vertical_axial_2d_distance(H, W, p=p)
    assert torch.allclose(d, d_ref)


@pytest.mark.parametrize("p", [0, 1, 2])
@pytest.mark.parametrize("W", [5, 7, 10])
@pytest.mark.parametrize("H", [5, 7, 10])
def test_local_2d_distance(H, W, p):
    d = AP.local_2d_distance(H, W, p=p)
    d_ref = _local_2d_distance(H, W, p=p)
    assert torch.allclose(d, d_ref)


@pytest.mark.parametrize("sigma", [0.5, 1, 2])
@pytest.mark.parametrize("W", [5, 7, 10])
@pytest.mark.parametrize("H", [5, 7, 10])
def test_local_2d_gaussian_distribution(H, W, sigma):
    d = AP.local_2d_gausian_distribution(H, W, sigma=sigma)
    d_ref = _local_2d_gaussian_distribution(H, W, sigma=sigma)
    assert torch.allclose(d, d_ref)


@pytest.mark.parametrize("window_size", [2, 4])
@pytest.mark.parametrize("W", [8, 16])
@pytest.mark.parametrize("H", [8, 16])
def test_swin_attention_pattern(H, W, window_size):
    # test non-shifted case
    d = AP.swin_attention_pattern(H, W, window_size, shift_size=0)

    # partition the self-attention into regions of window_size
    # similar to the window_partition function from the original paper
    h = H // window_size
    w = W // window_size
    d = d.reshape(h, window_size, w, window_size, h, window_size, w, window_size)

    product = itertools.product(range(h), range(w))
    for y, x in product:
        # every region should fully attend to itself
        assert torch.all(d[y, :, x, :, y, :, x, :])
        for y2, x2 in product:
            if y == y2 or x == x2:
                continue
            # different regions shouldn't attend between each other
            assert torch.all(~d[y, :, x, :, y2, :, x2, :])

    # test shifted case
    # in the shifted case, the self-attention should be the same
    # as in the non-shifted case, when we pad the inputs, apply the operations and then
    # remove the padding from the result
    d_shifted = AP.swin_attention_pattern(
        H, W, window_size, shift_size=window_size // 2
    )

    # add padding and remove shift
    h = H + window_size
    w = W + window_size
    d_padded = AP.swin_attention_pattern(h, w, window_size, shift_size=0)
    d_padded = d_padded.reshape(h, w, h, w)

    # remove padding elements
    half_size = window_size // 2
    s = slice(half_size, -half_size)
    d_padded = d_padded[s, s, s, s].reshape(H * W, H * W)

    assert torch.all(d_padded == d_shifted)


@pytest.mark.parametrize("k", [2, 3])
@pytest.mark.parametrize("W", [8, 15])
@pytest.mark.parametrize("H", [8, 15])
def test_dilated_2d_pattern(H, W, k):
    d = AP.dilated_2d_pattern(H, W, k)
    d = d.reshape(H, W, H, W)

    product_HW = itertools.product(range(H), range(W))
    product_kk = itertools.product(range(k), range(k))
    for h, w in product_HW:
        i = h % k
        j = w % k
        # every kth element is taken
        assert torch.all(d[h, w][i::k, j::k])
        for ii, jj in product_kk:
            if ii == i and jj == j:
                continue
            # and the other elements are discarded
            assert torch.all(~d[h, w][ii::k, jj::k])


def test_pattern_to_layout():
    BLOCK = 16
    SIZE = 128
    LAYOUT_SIZE = SIZE // BLOCK

    # All ones
    mask1 = torch.ones((SIZE, SIZE), dtype=torch.bool)
    layout1 = AP.pattern_to_layout(mask1, BLOCK)
    ref1 = torch.ones((LAYOUT_SIZE, LAYOUT_SIZE), dtype=torch.long)
    assert torch.allclose(layout1, ref1)

    # Diagonal -> expect block diagonal
    mask2 = torch.eye(SIZE, dtype=torch.bool)
    layout2 = AP.pattern_to_layout(mask2, BLOCK)
    ref2 = torch.eye(LAYOUT_SIZE, dtype=torch.long)
    assert torch.allclose(layout2, ref2)

    # Lower triangular, without the diagonal
    # note that the layout will need to have the diagonal, else the coefficients close enough would not be computed
    mask3 = torch.tril(torch.ones((SIZE, SIZE)), diagonal=-1).to(torch.bool)
    layout3 = AP.pattern_to_layout(mask3, BLOCK)
    ref3 = torch.tril(torch.ones((LAYOUT_SIZE, LAYOUT_SIZE)), diagonal=0).to(torch.long)
    assert torch.allclose(layout3, ref3)

    # Handle heads properly
    mask = torch.cat((mask1, mask2, mask3))
    layout = AP.pattern_to_layout(mask, BLOCK)
    assert torch.allclose(layout, torch.cat((ref1, ref2, ref3)))

    # Catch problematic dimensions
    mask_off = torch.ones((SIZE + 3, SIZE), dtype=torch.bool)
    with pytest.raises(AssertionError):
        AP.pattern_to_layout(mask_off, BLOCK)


def test_alibi_pattern():
    mask = AP.alibi_pattern(1e-3, (16, 128, 128))
    # Minor, check that all the top left corners are True
    assert torch.sum(mask[:, 0, 0]) == 16


def test_quick_layouts():

    seq_size = 128
    block_size = 16
    num_heads = 2

    # Fixed
    assert torch.allclose(
        AP.quick_fixed_layout(num_heads, block_size, seq_size),
        torch.Tensor(
            [
                [
                    [1, 1, 1, 1, 0, 0, 0, 1],
                    [1, 1, 1, 1, 0, 0, 0, 1],
                    [1, 1, 1, 1, 0, 0, 0, 1],
                    [1, 1, 1, 1, 0, 0, 0, 1],
                    [0, 0, 0, 1, 1, 1, 1, 1],
                    [0, 0, 0, 1, 1, 1, 1, 1],
                    [0, 0, 0, 1, 1, 1, 1, 1],
                    [0, 0, 0, 1, 1, 1, 1, 1],
                ],
                [
                    [1, 1, 1, 1, 0, 0, 0, 1],
                    [1, 1, 1, 1, 0, 0, 0, 1],
                    [1, 1, 1, 1, 0, 0, 0, 1],
                    [1, 1, 1, 1, 0, 0, 0, 1],
                    [0, 0, 0, 1, 1, 1, 1, 1],
                    [0, 0, 0, 1, 1, 1, 1, 1],
                    [0, 0, 0, 1, 1, 1, 1, 1],
                    [0, 0, 0, 1, 1, 1, 1, 1],
                ],
            ]
        ).long(),
    )

    # BSLongformer
    assert torch.allclose(
        AP.quick_bslongformer_layout(num_heads, block_size, seq_size),
        torch.Tensor(
            [
                [
                    [1, 1, 1, 1, 1, 1, 1, 1],
                    [1, 1, 1, 0, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 0, 1, 1, 1, 0, 0, 0],
                    [1, 0, 0, 1, 1, 1, 0, 0],
                    [1, 0, 0, 0, 1, 1, 1, 0],
                    [1, 0, 0, 0, 0, 1, 1, 1],
                    [1, 0, 0, 0, 0, 0, 1, 1],
                ],
                [
                    [1, 1, 1, 1, 1, 1, 1, 1],
                    [1, 1, 1, 0, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 0, 1, 1, 1, 0, 0, 0],
                    [1, 0, 0, 1, 1, 1, 0, 0],
                    [1, 0, 0, 0, 1, 1, 1, 0],
                    [1, 0, 0, 0, 0, 1, 1, 1],
                    [1, 0, 0, 0, 0, 0, 1, 1],
                ],
            ]
        ).long(),
    )

    # Variable
    assert torch.allclose(
        AP.quick_variable_layout(num_heads, block_size, seq_size),
        torch.Tensor(
            [
                [
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                ],
                [
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                ],
            ]
        ).long(),
    )

    # BigBird (just the shape)
    assert AP.quick_bigbird_layout(num_heads, block_size, seq_size).shape == torch.Size(
        [num_heads, seq_size // block_size, seq_size // block_size]
    )


def test_layout_to_pattern():
    torch.allclose(
        AP.layout_to_pattern(
            layout=torch.Tensor([[[0, 1], [1, 0]], [[1, 0], [0, 1]]]), block_size=2
        ),
        torch.Tensor(
            [
                [
                    [0.0, 0.0, 1.0, 1.0],
                    [0.0, 0.0, 1.0, 1.0],
                    [1.0, 1.0, 0.0, 0.0],
                    [1.0, 1.0, 0.0, 0.0],
                ],
                [
                    [1.0, 1.0, 0.0, 0.0],
                    [1.0, 1.0, 0.0, 0.0],
                    [0.0, 0.0, 1.0, 1.0],
                    [0.0, 0.0, 1.0, 1.0],
                ],
            ]
        ),
    )


def test_dense_sparsity_config():
    sc = DenseSparsityConfig(num_heads=1, block_size=16)
    with pytest.raises(expected_exception=ValueError):
        sc.setup_layout(seq_len=17)
    assert torch.allclose(
        sc.make_layout(seq_len=32), torch.Tensor([[[1, 1], [1, 1]]]).long()
    )


def test_big_bird_sparsity_config():
    sc = BigBirdSparsityConfig(
        num_heads=1,
        block_size=16,
        num_random_blocks=2,
        num_sliding_window_blocks=1,
        num_global_blocks=1,
    )
    with pytest.raises(expected_exception=ValueError):
        sc.make_layout(seq_len=16)
    sc = BigBirdSparsityConfig(
        num_heads=1,
        block_size=16,
        num_random_blocks=1,
        num_sliding_window_blocks=2,
        num_global_blocks=1,
    )
    with pytest.raises(expected_exception=ValueError):
        sc.make_layout(seq_len=16)
    sc = BigBirdSparsityConfig(
        num_heads=1,
        block_size=16,
        num_random_blocks=1,
        num_sliding_window_blocks=1,
        num_global_blocks=2,
    )
    with pytest.raises(expected_exception=ValueError):
        sc.make_layout(seq_len=16)
    with pytest.raises(expected_exception=NotImplementedError):
        BigBirdSparsityConfig(num_heads=1, attention="directional")


def test_bslongformer_sparsity_config():
    sc = BSLongformerSparsityConfig(num_heads=1, global_block_end_indices=[1])
    assert torch.allclose(
        sc.make_layout(128),
        torch.Tensor(
            [
                [
                    [1, 1, 1, 1, 1, 1, 1, 1],
                    [1, 1, 1, 0, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 0, 1, 1, 1, 0, 0, 0],
                    [1, 0, 0, 1, 1, 1, 0, 0],
                    [1, 0, 0, 0, 1, 1, 1, 0],
                    [1, 0, 0, 0, 0, 1, 1, 1],
                    [1, 0, 0, 0, 0, 0, 1, 1],
                ]
            ]
        ).long(),
    )
    with pytest.raises(expected_exception=ValueError):
        BSLongformerSparsityConfig(num_heads=1, global_block_end_indices=[])
    with pytest.raises(expected_exception=ValueError):
        BSLongformerSparsityConfig(num_heads=1, global_block_end_indices=[-1])


def test_fixed_sparsity_config():
    # chech that the case end < num_blocks is correct
    sc = FixedSparsityConfig(num_heads=1, horizontal_global_attention=True)
    assert torch.allclose(
        sc.make_layout(112),
        torch.Tensor(
            [
                [
                    [1, 1, 1, 1, 0, 0, 1],
                    [1, 1, 1, 1, 0, 0, 1],
                    [1, 1, 1, 1, 0, 0, 1],
                    [1, 1, 1, 1, 1, 1, 1],
                    [0, 0, 0, 1, 1, 1, 1],
                    [0, 0, 0, 1, 1, 1, 1],
                    [1, 1, 1, 1, 1, 1, 1],
                ]
            ]
        ).long(),
    )
    with pytest.raises(expected_exception=ValueError):
        FixedSparsityConfig(num_heads=1, num_local_blocks=3, num_global_blocks=2)
    with pytest.raises(expected_exception=NotImplementedError):
        FixedSparsityConfig(num_heads=1, attention="directional")
    with pytest.raises(expected_exception=ValueError):
        FixedSparsityConfig(
            num_heads=1, attention="unidirectional", horizontal_global_attention=True
        )
    with pytest.raises(expected_exception=ValueError):
        FixedSparsityConfig(
            num_heads=1,
            num_different_global_patterns=2,
            different_layout_per_head=False,
        )
    with pytest.raises(expected_exception=ValueError):
        FixedSparsityConfig(
            num_heads=1,
            num_different_global_patterns=10,
            num_local_blocks=4,
            num_global_blocks=1,
        )


def test_variable_sparsity_config():
    sc = VariableSparsityConfig(num_heads=1, global_block_end_indices=[1])
    assert torch.allclose(
        sc.make_layout(128),
        torch.Tensor(
            [
                [
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                    [1, 0, 0, 0, 1, 1, 1, 1],
                ]
            ]
        ).long(),
    )
    with pytest.raises(expected_exception=ValueError):
        VariableSparsityConfig(num_heads=1, global_block_end_indices=[])
    with pytest.raises(expected_exception=ValueError):
        VariableSparsityConfig(num_heads=1, global_block_end_indices=[-1])